# **Thesis Final Report**

Faculty Advisor: Dr. Thomas E. Boothby April 3, 2013

## **Office Building**

Sayre, PA

Seth M. Moyer

Structural

## Table of Contents

| Executive Summary                                 | 3  |
|---------------------------------------------------|----|
| Building Introduction                             | 5  |
| Structural Overview                               | 7  |
| Gravity Loads                                     | 16 |
| Lateral Loads                                     | 18 |
| Loads, Cases and Combinations                     | 23 |
| Proposal                                          | 27 |
| Structural Depth – Moment Frame Design            | 30 |
| Breadth One – Building Enclosure Redesign         | 44 |
| Breadth Two – Mechanical Loads and Systems Impact | 49 |
| Conclusion                                        | 51 |
| Appendix A                                        | 52 |
| Appendix B                                        | 54 |
| Appendix C                                        | 56 |
| Appendix D                                        | 58 |
| Appendix E                                        | 59 |
| Appendix F                                        | 60 |
| Appendix G                                        | 61 |
| Appendix H                                        | 62 |
| Appendix I                                        | 63 |
| Appendix J                                        | 68 |
| Appendix K                                        | 85 |
| Appendix L                                        | 86 |
| Appendix M                                        |    |
| Appendix N                                        | 89 |

## **Executive Summary**

The Office Building is being constructed as part of an office complex development project located in Sayre, PA. The building is five stories tall (all above grade), extending up to 67'-0" at the mean roof height (top of parapet elevation = 74'-5"), and has 85,075 ft<sup>2</sup> of total floor area. The floor structure is made up of 4" thick concrete slabs on composite steel deck (4" total combined depth). The slab is carried by open web steel joists which are supported by wide flange steel beams. The beams carry the gravity loads to wide flange steel columns that distribute the loads down to the foundations. The existing lateral system of the Office Building consists of 16 double angle braced frames (8 in each the N-S and E-W directions).

The Thesis Final Report consists of a lateral system redesign depth study and breadth studies focusing on an enclosure redesign for the Office Building. The structural depth involved an investigation into changing the braced frame lateral force resisting system to a moment frame system and designing the frames and rigid connections. Breadth one outlined a redesign of the building enclosure to an all-glazing curtain wall system as well as a barrier performance analysis of the proposed system, taking into account both heat and vapor flow through the enclosure. Breadth two also looked into the enclosure redesign by determining what kind of effects the new all-glazed facade would have on the heating/cooling loads of the building and how it might impact the mechanical systems.

For the structural depth study, four 3-bay moment frames were designed for the E-W direction and two 5-bay frames were designed for the N-S direction. The sizes of the frame members were controlled by the strict drift limitation set at H/500 under serviceability wind loading (10year MRI winds). The frames were checked for strength requirements under the nominal 700year MRI wind loading and all members passed that were checked. Critical and representative beam-to-column joints were selected based on the ETABS direct analysis method results and the moment connections were designed and detailed for those locations. All connections designed were bolted flange-plated type connections.

This connection was chosen to save money, since it allows for the single-plate shear tab and flange plates to be shop-welded to the column flanges and then brought to the site already partially assembled. The beam can then be lifted into place and bolted up quickly on site. Critical columns were checked for stiffening requirements and all ended up being heavy enough to resist panel zone shear as well as local flange bending, web yielding and web crippling without the need for transverse stiffeners or doubler plates. The decision to go with heavy column sections helped to avoid the need for careful stiffener detailing and the costs that go along with fabricating those details.

The moment frame design is still going to be significantly more expensive than if braced frames were used, even if column stiffening needs have been avoided and the number of frames and moment connections has been kept to a minimum. Detailing the foundations, base plates and anchor rods to utilize fixed (or at least partially fixed) column bases may be a cost-effective way

to reduce excessive first-story drifts and decrease frame member sizes. Another design to look into to weigh its costs and benefits would be the use of partially restrained moment connections. These connections are significantly cheaper to make than fully restrained and it may be cost-effective to design a greater number of these connection types throughout a greater number of frames than were required with the full restrained design.

The building enclosure redesign for breadth one was undertaken in an attempt to get rid of the existing insulated metal panels and to open up the Office Building to more natural light. The selection of the Kawneer 1600 curtain wall system was based on structural as well as thermal and solar performances. A practical layout for the glazing system units was developed with consideration of both span distance and C&C wind pressure. Additionally, the barrier performance of the proposed and existing enclosure systems was investigated, taking both heat and vapor transfer into account. It was also determined that the proposed redesign would result in poorer overall thermal resistance for the building, while at the same time, increasing its resistance to vapor transmission.

The performance data found and examined in breadth one was used to analyze the effects of the enclosure redesign on the heating/cooling loads of the Office Building. A 70% increase in both the exterior wall enclosure conduction loads and in the solar loads through the vision glass was calculated. Those 70% increases in the envelope loads were found to be equivalent to a nearly 40% increase in total load demand. Therefore, the mechanical systems would need to be upsized by about 40% in their overall capacity to be able to handle the higher demand brought on by the redesign.

## **Building Introduction**

The Office Building is being constructed as part of a multi-phase office complex development project in Sayre, PA. Upon completion, currently slated for April 2013, the building will provide office and meeting space. It will also feature a fitness wing and locker rooms for employees on the second floor. With five stories (all above grade) extending up to 67'-0" at the mean roof height (top of parapet elevation = 74'-5"), the 85,075 sq ft Office Building has been designed for a total occupancy load of 1134.

The footprint of the Office Building is laid out in an off-centered "H" configuration (see Figure 1). The façade enclosing the east and west wings is primarily made up of insulated metal panels on 6" cold formed metal studs. 6' high horizontal glazing strips break up the exterior at each story. The portion of the building that connects the two wings is enclosed with a curtain wall glazing system. Figure 2 shows an elevation of the south-facing (main entrance) side of the building in which you can see both the wings and connecting portion. A parapet extends up past the roof to a maximum height of 74'-5" along both the east and west facades. The parapet tapers down to a height of 68'-2 1/2" at the interior edge of the wings and continues at that elevation across the connecting segment.



Figure 1: First Floor Slab Plan (Image Credit: Larson Design Group)



Figure 2: South Elevation (Image Credit: Silling Associates, Inc.)

## **Structural Overview**

The Office Building structure is founded on spread, combined and strip footings which support the concrete piers, pier walls, foundation walls and columns directly to transfer the loads from the superstructure to the soil they bear upon. The floor system is made up of 4" thick (total) composite deck floor slabs on open web steel joists (non-composite for joists/beams). The joists frame into wide flange steel beams which transfer the loads to wide flange steel columns. The lateral system consists of braced frames in both the N-S and E-W directions, which all extend up to the roof.

#### **Foundations**

The geotechnical report conducted by CME Associates, Inc. for the Office Building site subsurface conditions indicates that spread and continuous footing foundations may be designed for an allowable soil bearing pressure of 4,000 psf. The report also specifies that spread footings should not be less than 3'-3" square and continuous strip footings should not be less than 2'-3" wide to prevent excessive settlements.

Typical interior columns are supported directly by spread footings just under the slab-on-grade. Typical perimeter columns sit on concrete piers that extend down to the spread footings. To protect against frost heave, perimeter footings have a minimum of 4'-0" of soil above their bearing elevation, measured from the bottom of the footing to finish grade. Both 8" and 12" thick concrete foundation walls run continuously along the outside perimeter of the building footprint, centered on 2'-3" strip footings, between the perimeter piers and footings.

At the braced frame locations outlined in Figure 3, 28" thick pier walls extend between the individual column piers. Combined footings also extend from pier to pier. The combined footings help to resist the overturning moments that result from lateral loading along their longitudinal axis. They also help to prevent differential settlement of the individual columns that form the braced frame.



Figure 3: Braced Frame/Combined Footing Locations (Image Credit: Larson Design Group)

#### Floor and Framing System

The first floor is a 4" thick slab-on-grade with WWF 6x6 – W2.9xW2.9 at mid-depth. Floors 2-5 consist of 2 1/2" thick normal weight concrete on 20 gauge 1 1/2" composite deck with WWF 6x6 – W4.0xW4.0 at mid-depth (4" total slab thickness). The composite deck slab is supported by open web steel joists (typically 16K2 up to 16K4) spaced at 3'-0" on center max. The floor joists distribute the gravity loads to the wide flange beams (interior beams are typically W24s and the exterior beams range from W12 to W16). The maximum beam span is 36', between grid lines 1 and 3, for the W24x76 interior beams along grid lines B, C, H and J.

The beams carry the loads to wide flange columns to then be dispersed to the foundation. Typical column sizes include W12x53, W12x65, W12x79 and W12x106. All typical columns are spliced at 30'-8" above first floor (4' above the third floor). Where the fitness room is located in the east wing on level 2, HSS6x6x1/4 columns run up to the bottom of the W24x55 and W24x76 beams at grid points H2, H4, J2 and J4. The primary purpose of these one story columns is to reduce vibrations in the bays supporting the fitness center activities, which might otherwise create a serviceability issue with the light system of framing being utilized.

An enlarged portion of the typical floor framing plan can be seen in Figure 4 below.





#### Roof and Framing System

The roof structure is made up of 1 1/2" Type B 20 gauge wide rib roof deck. A maximum thickness of 4" of rigid insulation is laid on top of the deck and is covered with fully adhered EPDM roof membrane. The deck is typically supported by 16KCS2 and 24K4 open web steel joists spaced at 6'-0" on center max. The joists then rest on W21x44 interior beams (towards which they slope down from the perimeter beams) and either W12x19 or W14x22 exterior beams. All gravity loads are then transferred to the wide flange columns.

An enlarged portion of the typical roof framing plan can be seen in Figure 5 below.





#### Lateral System

The lateral force resisting system of the Office Building is made up of 16 "K" braced frames (8 in each the N-S and E-W directions) (see Figure 3 for plan locations). The double angles brace the center work point of the perimeter beam at each floor down to the horizontal double angle-to-column intersection points above the windows of the floor below and up to the horizontal double angles brace the base of the columns to the center work point of the horizontal wide flange beam below the windows at level 1). See Figures 6 and 7 for bracing and frame details.

Wind pressures on the exterior of the building are collected by the façade and the resultant forces are transferred into the floor/roof diaphragms. The diaphragms at each story act rigidly and transfer the story shear forces to the braced frames that run parallel to the direction of the loading (the roof diaphragm has been treated as rigid for simplification of modeling and analysis, although it will likely behave as flexible since it is constructed of untopped steel decking). The braced frames resist the lateral loads based on the proportion of their relative stiffness. These story forces accumulate at each floor, moving down through the building until the total base shear is transferred into the ground via the foundation.

Similarly, for seismic loads induced by the building's response to ground motion/acceleration, the total base shear is distributed to the diaphragms at each story as a function of the respective heights and weights attributed to each level. Once distributed, the seismic forces are transmitted through the diaphragms and into the braced frames based on relative stiffness. Similarly, the story forces accumulate and are eventually transferred down to the bearing soils through the foundation.



Figure 6: Typical Bracing Details (Image Credit: Larson Design Group)



Figure 7: Typical Braced Frame Elevation (Image Credit: Larson Design Group)

#### Design Codes

The major model and design codes and standards used in the design of the Office Building:

- Pennsylvania Uniform Construction Code (PAUCC)
- International Building Code 2009 (IBC 2009) (as adopted and modified by the PAUCC)
- Minimum Design Loads for Buildings and Other Structures (ASCE 7-05)
- Specification for Structural Concrete (ACI 301-05)
- Building Code Requirements for Structural Concrete (ACI 318-08)
- Specification for Structural Steel Buildings (AISC 360-05)
- Standard Specifications for Open Web Steel Joists, K-Series (SJI-K-1.1 05)
- Design Manual for Composite Decks, Form Decks, Roof Decks and Cellular Metal Floor Deck with Electrical Distribution, SDI Pub. No. 29

The same codes and standards are being referenced for use in this technical report with the following exceptions:

- ASCE 7-10
- AISC Steel Construction Manual, 14<sup>th</sup> Edition, LRFD
- Specification for Structural Steel Buildings (AISC 360-10)
- Building Code Requirements for Structural Concrete (ACI 318-11)

### Materials Used

Materials were referenced from Sheets S0.1 and S0.2 and are summarized below in Figure 8.

| Steel                         |               |       |  |  |  |  |
|-------------------------------|---------------|-------|--|--|--|--|
| Туре                          | ASTM Standard | Grade |  |  |  |  |
| W and WT Shapes               | A992          | 50    |  |  |  |  |
| Standard Shapes               | A36           | N/A   |  |  |  |  |
| Angles, Channels and Plates   | A36           | N/A   |  |  |  |  |
| HSS                           | A500          | В     |  |  |  |  |
| Pipe                          | A53, E or S   | В     |  |  |  |  |
| Anchor Rods                   | F1554         | N/A   |  |  |  |  |
| Shear/Anchor Studs            | A108          | N/A   |  |  |  |  |
| Deformed Anchors              | A496          | N/A   |  |  |  |  |
| Bolts (Plain)                 | A307          | N/A   |  |  |  |  |
| Bolts (High Strength)         | A325          | N/A   |  |  |  |  |
| Nuts                          | A563          | С     |  |  |  |  |
| Hardened Washers              | F436          | N/A   |  |  |  |  |
| Plate Washers                 | A36           | N/A   |  |  |  |  |
| Deformed and Plain Bars       | A615          | 60    |  |  |  |  |
| Welded Wire Reinforcement     | A185          | N/A   |  |  |  |  |
| Steel Deck                    | A611          | C,D,E |  |  |  |  |
| or Steel Deck                 | A653-94       | 33    |  |  |  |  |
| Zinc Coated Steel Sheet       | A1003         | N/A   |  |  |  |  |
| Hot Dipped, Galvanized Finish | A123          | N/A   |  |  |  |  |
| Load-Bearing Cold-Formed      | C955-07       | N/A   |  |  |  |  |
| SS Pipes and Tubes            | A312          | N/A   |  |  |  |  |
| SS Bars and Fittings          | A582          | N/A   |  |  |  |  |
| Alum. Pipes and Tubes         | B429          | N/A   |  |  |  |  |
| Alum. Bars and Fittings       | B221          | N/A   |  |  |  |  |
| SS Fasteners                  | A240/A666     | N/A   |  |  |  |  |

| Concrete                |        |           |  |  |  |  |  |
|-------------------------|--------|-----------|--|--|--|--|--|
| Usage                   | Weight | f'c (psi) |  |  |  |  |  |
| Foundation Walls        | Normal | 4500      |  |  |  |  |  |
| Column Piers            | Normal | 4500      |  |  |  |  |  |
| Combined Footings       | Normal | 4500      |  |  |  |  |  |
| Exterior Slabs-on-Grade | Normal | 4500      |  |  |  |  |  |
| Specified Column Piers  | Normal | 5500      |  |  |  |  |  |
| Elements Not Specified  | Normal | 3000      |  |  |  |  |  |

| Miscellaneous    |                 |  |  |  |  |
|------------------|-----------------|--|--|--|--|
| Туре             | Standard        |  |  |  |  |
| Grout (6000 psi) | ASTM C1107      |  |  |  |  |
| Weld Electrodes  | AWS Class E7018 |  |  |  |  |

#### Figure 8: Materials Summary

## **Gravity Loads**

Dead, live and snow loads will be calculated and compared to the design loads used by the structural engineer. Spot checks of various typical framing members will then be made using the loads that were calculated.

#### Dead and Live Loads

Dead loads for the roof and floors were calculated using the actual weights of construction materials and additional allowances to account for superimposed loads due to MEP and ceiling materials as well as various structural framing. The calculated values of both the roof and floor dead loads matched the design values (See Figure 9 below). Refer to Appendix A for a detailed breakdown of the gravity load calculations.

| Dead Loads (psf)  |    |    |  |  |  |  |
|-------------------|----|----|--|--|--|--|
| Design Calculated |    |    |  |  |  |  |
| Roof              | 20 | 20 |  |  |  |  |
| Floor             | 60 | 60 |  |  |  |  |

| Figure 9: Dead Load Summary | V |
|-----------------------------|---|
|-----------------------------|---|

Live loads for the roof and floors were determined from ASCE 7-10, Table 4-1 for office buildings and roofs. For optimal flexibility of the Office Building in years to come, 80 psf for corridors above the first floor was selected as well as an additional allowance of 20 psf for partitions. This total load of 100 psf for the floors will allow for a variety of configurations of the office space instead of just designing for the corridors where they fall in the current layout. The calculated values for both the roof (minimum live load from Table 4-1) and floors matched the design values (See Figure 10 below).

| Live Loads (psf) |     |     |  |  |  |  |
|------------------|-----|-----|--|--|--|--|
| Design Calculate |     |     |  |  |  |  |
| Roof             | 20  | 20  |  |  |  |  |
| Floor            | 100 | 100 |  |  |  |  |

Figure 10: Live Load Summary

#### Snow and Drift Loads

The flat roof snow load was determined to be 21 psf from a ground snow load value of 30 psf (Refer to Appendix A for flat roof snow load calculation details). 21 psf is less than the design snow load of 24 psf. This is due to the fact that the design value was calculated using a thermal factor of 1.1 as opposed to the 1.0 used for the calculation in this report. It was assumed that the roof could be considered warm, since the structure is heated and the roof is not openly ventilated, and therefore Ct=1.0. However, using the thermal factor of 1.1 is conservative.

The maximum value of the snow drift load was calculated for the longest stretch of roof (lu=155.33') upwind of the full-height parapet. In this case, the drift snow load was found to be a maximum of 57.8 psf directly against the parapet at the east or west exterior walls. This value is superimposed onto the flat roof snow load and results in a maximum snow load value of 78.8 psf at the inside face of the parapet. Refer to Appendix A for the hand calculations of the drift load as well as a loading diagram at the parapet.

## Lateral Loads

#### Wind Loads

Design wind pressures and loads were calculated for both N-S and E-W directions in accordance with ASCE 7-10, Chapter 27 (MWFRS – Directional Procedure). Design pressures were calculated by hand and were resolved into story forces using Excel. Refer to Figures 11-18 and Appendix B for wind loading summary and calculations.

| N-S Design Wind Pressures |         |               |                     |                     |                     |  |  |
|---------------------------|---------|---------------|---------------------|---------------------|---------------------|--|--|
|                           |         | Distance (ft) |                     | Internal Pressure   |                     |  |  |
| Surface                   | Level   |               | wind Pressure (pst) | (+)GC <sub>pi</sub> | (-)GC <sub>pi</sub> |  |  |
|                           | 1       | 0             | 16.63               | 6.01                | -6.01               |  |  |
|                           | 2       | 13.33         | 16.63               | 6.01                | -6.01               |  |  |
|                           | 3       | 26.67         | 18.59               | 6.01                | -6.01               |  |  |
| Windward Wall             | 4       | 40            | 20.35               | 6.01                | -6.01               |  |  |
|                           | 5       | 53.33         | 21.53               | 6.01                | -6.01               |  |  |
|                           | Roof    | 66.67         | 22.70               | 6.01                | -6.01               |  |  |
|                           | Parapet | 74.42         | 51.38               | N/A                 | N/A                 |  |  |
| Looward Wall              | 1-Roof  | 66.67         | -14.19              | 6.01                | -6.01               |  |  |
| Leeward wall              | Parapet | 74.42         | -34.25              | N/A                 | N/A                 |  |  |
| Side Wall                 | All     | N/A           | -19.86              | 6.01                | -6.01               |  |  |
| Roof                      | N/A     | 0-67          | -25.54              | 6.01                | -6.01               |  |  |
|                           | N/A     | 67-134        | -14.19              | 6.01                | -6.01               |  |  |
|                           | N/A     | >134          | -8.51               | 6.01                | -6.01               |  |  |

| N-S Wind Forces                 |                                                          |                 |                           |        |      |                   |        |         |
|---------------------------------|----------------------------------------------------------|-----------------|---------------------------|--------|------|-------------------|--------|---------|
| Laural Cham. Haish              | Trib. Below                                              |                 | Trib. Above               |        |      | Chama Channy (Ia) |        |         |
| Level                           | Story Height Height (ft) Area (sf) Height (ft) Area (sf) | Story Shear (K) | Overturning Moment (It-K) |        |      |                   |        |         |
| 1                               | 0                                                        | N/A             | N/A                       | 6.67   | 1035 | 0                 | 370.36 | 0       |
| 2                               | 13.33                                                    | 6.67            | 1035                      | 6.67   | 1035 | 65.83             | 370.36 | 877.46  |
| 3                               | 26.67                                                    | 6.67            | 1035                      | 6.67   | 1035 | 69.68             | 304.54 | 1858.26 |
| 4                               | 40                                                       | 6.67            | 1035                      | 6.67   | 1035 | 72.72             | 234.86 | 2908.76 |
| 5                               | 53.33                                                    | 6.67            | 1035                      | 6.67   | 1035 | 75.15             | 162.14 | 4007.82 |
| Roof                            | 66.67                                                    | 6.67            | 1035                      | Varies | 570  | 86.99             | 86.99  | 5799.64 |
| Base Shear (k)                  |                                                          |                 |                           |        |      | 370.36            |        |         |
| Total Overturning Moment (ft-k) |                                                          |                 |                           |        |      | 15451.95          |        |         |

Figure 12: N-S Wind Forces







Figure 14: N-S Wind Force Diagram

| E-W Design Wind Pressures |         |               |                     |                     |                     |  |  |
|---------------------------|---------|---------------|---------------------|---------------------|---------------------|--|--|
| 6                         | 1 1     | Distance (ft) |                     | Internal Pressure   |                     |  |  |
| Surrace                   | Levei   |               | wind Pressure (pst) | (+)GC <sub>pi</sub> | (-)GC <sub>pi</sub> |  |  |
|                           | 1       | 0             | 16.63               | 6.01                | -6.01               |  |  |
|                           | 2       | 13.33         | 16.63               | 6.01                | -6.01               |  |  |
|                           | 3       | 26.67         | 18.59               | 6.01                | -6.01               |  |  |
| Windward Wall             | 4       | 40            | 20.35               | 6.01                | -6.01               |  |  |
|                           | 5       | 53.33         | 21.53               | 6.01                | -6.01               |  |  |
|                           | Roof    | 66.67         | 22.70               | 6.01                | -6.01               |  |  |
|                           | Parapet | 74.42         | 51.38               | N/A                 | N/A                 |  |  |
| Looward Wall              | 1-Roof  | 66.67         | -13.34              | 6.01                | -6.01               |  |  |
| Leeward wall              | Parapet | 74.42         | -34.25              | N/A                 | N/A                 |  |  |
| Side Wall All             |         | N/A           | -19.86              | 6.01                | -6.01               |  |  |
| Roof                      | N/A     | 0-67          | -25.54              | 6.01                | -6.01               |  |  |
|                           | N/A     | 67-134        | -14.19              | 6.01                | -6.01               |  |  |
|                           | N/A     | >134          | -8.51               | 6.01                | -6.01               |  |  |

|       | E-W Wind Forces |             |           |             |             |                 |                 |                           |  |  |  |  |
|-------|-----------------|-------------|-----------|-------------|-------------|-----------------|-----------------|---------------------------|--|--|--|--|
| Loval |                 | Trib. Below |           | Trib. A     | Trib. Above |                 | Stone Shoor (k) | Quarturning Mamont (ft k) |  |  |  |  |
| Level |                 | Height (ft) | Area (sf) | Height (ft) | Area (sf)   |                 | Story Shear (K) | Overturning Moment (It-K) |  |  |  |  |
| 1     | 0               | N/A         | N/A       | 6.67        | 905         | 0               | 364.32          | 0                         |  |  |  |  |
| 2     | 13.33           | 6.67        | 905       | 6.67        | 905         | 56.02           | 364.32          | 746.74                    |  |  |  |  |
| 3     | 26.67           | 6.67        | 905       | 6.67        | 905         | 59.39           | 308.31          | 1583.83                   |  |  |  |  |
| 4     | 40              | 6.67        | 905       | 6.67        | 905         | 62.05           | 248.92          | 2481.87                   |  |  |  |  |
| 5     | 53.33           | 6.67        | 905       | 6.67        | 905         | 64.17           | 186.87          | 3422.38                   |  |  |  |  |
| Roof  | 66.67           | 6.67        | 905       | 7.75        | 1052        | 122.70          | 122.70          | 8180.34                   |  |  |  |  |
|       |                 | 364.32      |           |             |             |                 |                 |                           |  |  |  |  |
|       |                 |             |           | -           | To          | tal Overturning | Moment (ft-k)   | 16415.15                  |  |  |  |  |

Figure 16: E-W Wind Forces







Figure 18: E-W Wind Force Diagram

#### Seismic Loads

Design seismic loads were calculated for the Office Building in accordance with ASCE 7-10, Chapters 11 and 12 (and in particular, section 12.8 – Equivalent Lateral Force Procedure). The design seismic base shear was calculated by hand and was resolved into story forces using Excel. Refer to Figures 17-18 and Appendix C for seismic loading summary and calculations.

|                                 | Seismic Forces                    |                         |                                            |                 |                 |                 |                           |  |  |  |  |
|---------------------------------|-----------------------------------|-------------------------|--------------------------------------------|-----------------|-----------------|-----------------|---------------------------|--|--|--|--|
| Level                           | Story Height, h <sub>x</sub> (ft) | Story Weight, $w_x$ (k) | w <sub>x</sub> h <sub>x</sub> <sup>k</sup> | C <sub>vx</sub> | Story Force (k) | Story Shear (k) | Overturning Moment (ft-k) |  |  |  |  |
| 1                               | 0                                 | N/A                     | 0                                          | 0               | 0               | 250.60          | 0                         |  |  |  |  |
| 2                               | 13.33                             | 1341                    | 17875.53                                   | 0.0853          | 21.37           | 250.60          | 284.80                    |  |  |  |  |
| 3                               | 26.67                             | 1341                    | 35764.47 0.1706 42.75 229.23               |                 | 229.23          | 1140.07         |                           |  |  |  |  |
| 4                               | 40                                | 1341                    | 53640.00                                   | 0.2558          | 64.11           | 186.49          | 2564.52                   |  |  |  |  |
| 5                               | 53.33                             | 1341                    | 71515.53                                   | 0.3411          | 85.48           | 122.37          | 4558.58                   |  |  |  |  |
| Roof                            | 66.67                             | 463                     | 30868.21                                   | 0.1472          | 36.90           | 36.90           | 2459.80                   |  |  |  |  |
|                                 |                                   |                         |                                            |                 |                 | Base Shear (k)  | 250.60                    |  |  |  |  |
| Total Overturning Moment (ft-k) |                                   |                         |                                            |                 |                 |                 |                           |  |  |  |  |

Figure 19: Seismic Forces



Figure 20: Seismic Force Diagram

## Loads, Cases and Combinations

#### Loads and Load Cases

Design wind loads for the Office Building were previously calculated for Technical Report 1 using the ASCE 7-10 MWFRS Directional Procedure. The pressures and resultant forces can be found in the "Lateral Loads" section of this report. The four directional load cases from ASCE 7-10 were used to consider the potential effects of the basic wind loads. Since the center of rigidity was considered to be at the exact center of the building's plan dimensions (in both X and Y directions), the wind load acts at the center of pressure without any inherent or additional eccentricity for Case 1 and Case 3. Case 3 was therefore able to be eliminated as a controlling condition by inspection since the resultant loads are reduced by 25%. Because there is no torsional moment produced in Case 1 or Case 3, the fact that the X and Y direction loads act simultaneously in the latter case results only in a smaller direct load. The effects of Case 1 (X and Y), Case 2 (X and Y) and Case 4 were all analyzed in ETABS through five different wind loading scenarios for each load combination involving wind. The wind load values for direct and torsional effects for each load case are shown in the tables of Figure 21.

| ASCE 7-10 Wind Load Case 1 |                                                     |       |   |   |   |   |  |  |  |  |  |
|----------------------------|-----------------------------------------------------|-------|---|---|---|---|--|--|--|--|--|
| Level                      | $F_x(k)$ $F_y(k)$ $e_y(ft)$ $e_x(ft)$ $M_x(ft-k)$ N |       |   |   |   |   |  |  |  |  |  |
| 1                          | 0                                                   | 0     | 0 | 0 | 0 | 0 |  |  |  |  |  |
| 2                          | 56.02                                               | 65.83 | 0 | 0 | 0 | 0 |  |  |  |  |  |
| 3                          | 59.39                                               | 69.68 | 0 | 0 | 0 | 0 |  |  |  |  |  |
| 4                          | 62.05                                               | 72.72 | 0 | 0 | 0 | 0 |  |  |  |  |  |
| 5                          | 64.17                                               | 75.15 | 0 | 0 | 0 | 0 |  |  |  |  |  |
| Roof                       | 122.70                                              | 86.99 | 0 | 0 | 0 | 0 |  |  |  |  |  |

|       | ASCE 7-10 Wind Load Case 2 |                    |                     |                     |                              |         |  |  |  |  |  |
|-------|----------------------------|--------------------|---------------------|---------------------|------------------------------|---------|--|--|--|--|--|
| Level | F <sub>x</sub> (k)         | F <sub>y</sub> (k) | e <sub>y</sub> (ft) | e <sub>x</sub> (ft) | (ft) M <sub>x</sub> (ft-k) N |         |  |  |  |  |  |
| 1     | 0                          | 0                  | 20.04               | 22.98               | 0                            | 0       |  |  |  |  |  |
| 2     | 42.01                      | 49.37              | 20.04               | 22.98               | 841.87                       | 1134.26 |  |  |  |  |  |
| 3     | 44.54                      | 52.26              | 20.04               | 22.98               | 892.46                       | 1200.61 |  |  |  |  |  |
| 4     | 46.54                      | 54.54              | 20.04               | 22.98               | 932.45                       | 1253.04 |  |  |  |  |  |
| 5     | 48.13                      | 56.36              | 20.04               | 22.98               | 964.41                       | 1294.95 |  |  |  |  |  |
| Roof  | 92.02                      | 65.24              | 20.04               | 22.98               | 1843.94                      | 1498.95 |  |  |  |  |  |

|       | ASCE 7-10 Wind Load Case 3 |                    |                     |                     |                       |                       |                           |  |  |  |  |  |
|-------|----------------------------|--------------------|---------------------|---------------------|-----------------------|-----------------------|---------------------------|--|--|--|--|--|
| Level | F <sub>x</sub> (k)         | F <sub>y</sub> (k) | e <sub>y</sub> (ft) | e <sub>x</sub> (ft) | M <sub>x</sub> (ft-k) | M <sub>y</sub> (ft-k) | M <sub>total</sub> (ft-k) |  |  |  |  |  |
| 1     | 0                          | 0                  | 0                   | 0                   | 0                     | 0                     | 0                         |  |  |  |  |  |
| 2     | 42.01                      | 49.37              | 0                   | 0                   | 0                     | 0                     | 0                         |  |  |  |  |  |
| 3     | 44.54                      | 52.26              | 0                   | 0                   | 0                     | 0 (                   |                           |  |  |  |  |  |
| 4     | 46.54                      | 54.54              | 0                   | 0                   | ) 0 0                 |                       | 0                         |  |  |  |  |  |
| 5     | 48.13                      | 56.36              | 0                   | 0 0                 |                       | 0                     | 0                         |  |  |  |  |  |
| Roof  | 92.02                      | 65.24              | 0                   | 0                   | 0                     | 0                     | 0                         |  |  |  |  |  |

|       | ASCE 7-10 Wind Load Case 4 |                    |                     |                     |                       |                       |                           |  |  |  |  |  |
|-------|----------------------------|--------------------|---------------------|---------------------|-----------------------|-----------------------|---------------------------|--|--|--|--|--|
| Level | F <sub>x</sub> (k)         | F <sub>y</sub> (k) | e <sub>y</sub> (ft) | e <sub>x</sub> (ft) | M <sub>x</sub> (ft-k) | M <sub>y</sub> (ft-k) | M <sub>total</sub> (ft-k) |  |  |  |  |  |
| 1     | 0                          | 0                  | 20.04               | 22.98               | 0                     | 0                     | 0                         |  |  |  |  |  |
| 2     | 31.54                      | 37.06              | 20.04               | 22.98               | 631.96                | 851.45                | 1483.42                   |  |  |  |  |  |
| 3     | 33.43                      | 39.23              | 20.04               | 22.98               | 669.94                | 901.26                | 1571.20                   |  |  |  |  |  |
| 4     | 34.93                      | 40.94              | 20.04               | 22.98               | 699.96                | 940.62                | 1640.57                   |  |  |  |  |  |
| 5     | 36.13                      | 42.31              | 20.04               | 22.98               | 22.98 723.95 972.08   |                       | 1696.03                   |  |  |  |  |  |
| Roof  | 69.08                      | 48.98              | 20.04               | 22.98               | 1384.18               | 1125.21               | 2509.39                   |  |  |  |  |  |

Figure 21: ASCE 7-10 Wind Case Loads

Design seismic loads were also previously calculated for Technical Report 1 using the ASCE 7-10 Equivalent Lateral Force Procedure. Seismic forces had to be recalculated for this report to account for the reduction in the building's period and the updated loads can be found in the "Lateral Loads" section of this report. The loads induced by seismic activity act through the center of mass at each story. Since the center of mass in the N-S direction does not coincide with the center of rigidity, there is an inherent torsional moment caused by the seismic forces that act in the E-W direction. In the E-W direction, the building plan is symmetrical and the center of mass and center of rigidity are aligned. Thus, there is no inherent torsion caused by the seismic forces that act in the N-S direction. In both directions, an accidental torsional moment was also applied to the model to account for the assumed displacement of the center of mass by a distance of 5% of the plan dimension perpendicular to the direction of loading, as outlined in ASCE 7-10. For Seismic Design Category B, amplification of the accidental torsional moment is not required and the redundancy factor,  $\rho$ , is permitted to equal 1.0 so that the horizontal seismic load effects for the Office Building are not amplified. The calculated seismic load effects for the Office Building are not amplified.

|       | N-S Seismic Forces |                 |        |                       |                       |                        |                           |                |  |  |  |  |
|-------|--------------------|-----------------|--------|-----------------------|-----------------------|------------------------|---------------------------|----------------|--|--|--|--|
| Level | Story Force (k)    | Story Shear (k) | e (ft) | e <sub>acc</sub> (ft) | M <sub>t</sub> (ft-k) | M <sub>ta</sub> (ft-k) | M <sub>total</sub> (ft-k) | Story M (ft-k) |  |  |  |  |
| 1     | 0                  | 250.60          | N/A    | N/A                   | 0                     | 0                      | 0                         | 1919.18        |  |  |  |  |
| 2     | 21.37              | 250.60          | 0      | 7.658                 | 0                     | 163.63                 | 163.63                    | 1919.18        |  |  |  |  |
| 3     | 42.75              | 229.23          | 0      | 7.658                 | 0                     | 327.37                 | 327.37                    | 1755.55        |  |  |  |  |
| 4     | 64.11              | 186.49          | 0      | 7.658                 | 0                     | 491.00                 | 491.00                    | 1428.18        |  |  |  |  |
| 5     | 85.48              | 122.37          | 0      | 7.658                 | 0                     | 654.62                 | 654.62                    | 937.18         |  |  |  |  |
| Roof  | 36.90              | 36.90           | 0      | 7.658                 | 0                     | 282.56                 | 282.56                    | 282.56         |  |  |  |  |

|       | E-W Seismic Forces |                 |        |                       |                       |                        |                           |                |  |  |  |
|-------|--------------------|-----------------|--------|-----------------------|-----------------------|------------------------|---------------------------|----------------|--|--|--|
| Level | Story Force (k)    | Story Shear (k) | e (ft) | e <sub>acc</sub> (ft) | M <sub>t</sub> (ft-k) | M <sub>ta</sub> (ft-k) | M <sub>total</sub> (ft-k) | Story M (ft-k) |  |  |  |
| 1     | 0                  | 250.60          | N/A    | N/A                   | 0                     | 0                      | 0                         | 2438.62        |  |  |  |
| 2     | 21.37              | 250.60          | 3.134  | 6.679                 | 66.95                 | 142.70                 | 209.66                    | 2438.62        |  |  |  |
| 3     | 42.75              | 229.23          | 3.134  | 6.679                 | 133.96                | 285.52                 | 419.47                    | 2228.96        |  |  |  |
| 4     | 64.11              | 186.49          | 3.134  | 6.679                 | 200.91                | 428.22                 | 629.13                    | 1809.49        |  |  |  |
| 5     | 85.48              | 122.37          | 3.134  | 6.679                 | 267.86                | 570.93                 | 838.79                    | 1180.36        |  |  |  |
| Roof  | 36.90              | 36.90           | 2.579  | 6.679                 | 95.14                 | 246.43                 | 341.57                    | 341.57         |  |  |  |

Figure 22: Seismic Load Effects

The torsional effects from the seismic previously outlined were not entered into ETABS directly, as they were for the wind loading. Instead, only the story forces were entered and were applied at the center of mass for each story. The effects of the inherent eccentricity to the center of rigidity as well as the accidental torsional moments were taken into account within the ETABS model.

#### Load Combinations

The following ASCE 7-10 strength design load combinations were considered in the analysis:

- 1.2D + 1.6L + 0.5S
- 1.2D + 1.6S + 0.5L
- 1.2D + 1.6S + 0.5W
- 1.2D + 1.0W + 0.5L + 0.5S
- 1.2D + 1.0E + 0.5L + 0.2S
- 0.9D + 1.0W
- 0.9D + 1.0E

Considering these load combinations as well as combinations to address serviceability, 21 total load cases were developed for the ETABS model to consider all applicable lateral loading conditions. Gravity-only load cases were analyzed separately using single-frame models and will be covered in the "Structural Depth – Moment Frame Design" section of this report. The following lateral cases were input into the primary ETABS model:

- COMB1: 1.2D + 1.6S + 0.5WINDC1X
- COMB2: 1.2D + 1.6S + 0.5WINDC1Y
- COMB3: 1.2D + 1.6S + 0.5WINDC2X
- COMB4: 1.2D + 1.6S + 0.5WINDC2Y
- COMB5: 1.2D + 1.6S + 0.5WINDC4
- COMB6: 1.2D + 1.0WINDC1X + 0.5L + 0.5S
- COMB7: 1.2D + 1.0WINDC1Y + 0.5L + 0.5S
- COMB8: 1.2D + 1.0WINDC2X + 0.5L + 0.5S
- COMB9: 1.2D + 1.0WINDC2Y + 0.5L + 0.5S
- COMB10: 1.2D + 1.0WINDC4 + 0.5L + 0.5S
- COMB11: 1.2D + 1.0QUAKEX + 0.5L + 0.2S
- COMB12: 1.2D + 1.0QUAKEY + 0.5L + 0.2S
- COMB13: 0.9D + 1.0WINDC1X
- COMB14: 0.9D + 1.0WINDC1Y
- COMB15: 0.9D + 1.0WINDC2X
- COMB16: 0.9D + 1.0WINDC2Y
- COMB17: 0.9D + 1.0WINDC4
- COMB18: 0.9D + 1.0QUAKEX
- COMB19: 0.9D + 1.0QUAKEY
- COMB20: 1.0D + 0.5L + 0.44WINDC1X
- COMB21: 1.0D + 0.5L + 0.44WINDC1Y

=>where C1, C2 and C4 indicate ASCE 7-10 wind load Case 1, 2 and 4, respectively, and X and Y indicate the direction of loading.

## Proposal

#### Structural Depth

Through the analyses performed for previous technical reports, the existing structural system of the Office Building was determined to be sufficient for both strength and serviceability requirements. The only exceptions were several story drifts, found in Technical Report 3, which exceeded allowable drift limitations under wind loading. Of the alternate floor systems considered in Technical Report 2, only composite steel was considered to be a viable option, and it was found to have similar properties and performance to the original floor. The composite design was found to weigh about 12 psf less, and cost around 6% less (\$/sf) than the existing floor design. However, the major advantage offered by composite steel is improved vibration control, and the existing floor system of composite deck slabs on open web steel joists was specifically designed to limit vibrations in accordance with AISC Design Guide 11. For these reasons, the focus of the structural depth was placed on a redesign of the lateral system.

Although the existing lateral force resisting system is made up of double angle braced frames, it acts, effectively, much as a moment frame system. The bracing configuration in place below and above the windows at each story (bracing is only below, not above, the windows at level 5) has the double angle braces extending up/down to connection points at the top and bottom corners of the windows at each level. Therefore, the bracing connections to the columns, via gusset plates, are occurring at effectively unbraced locations along the height of the columns (at points several feet above and below the perimeter beam and floor diaphragm elevations, at which the columns are fully braced). Because of the brace termination points, bending moments are introduced into the columns. This configuration necessitates the columns to resist interactive axial and flexural forces, creating a significantly less efficient bracing arrangement than fully triangulated braces would offer. Therefore, the braced frames in place are not fully taking advantage of the benefits that a braced frame system is capable of achieving in terms of efficiency.

Moment frames will be investigated and used to replace the existing braced frames as the lateral force resisting system for the Office Building. Fully restrained moment connections will be used for the rigid frames in which the lateral support, through resistance of sway in the frames, will be provided by maintaining the right angles between connected members (beam-to-column connections) through sufficient connection rigidity/stiffness. The connections will be designed to provide a full transfer of moment with negligible relative rotation between the members making up each joint, in accordance with the controlling wind loading case and applicable load combinations of ASCE 7-10 as determined in Technical Report 3.

In order to optimize the redesign of the lateral system, the moment frames will, ideally, be located at or near the perimeter of the Office Building, as the existing braced frames are currently. Columns that are part of moment connections will be assessed for strength and, where required, member sizes will either be changed or stiffening elements and/or doubler plates will be provided. Existing beams in the moment frames will also be checked for strength and sizes will be changed where necessary.

#### Breadth One

The existing bracing configuration was designed for the locations above and below the windows so that the horizontal glazing strips could continue around the perimeter of the building, uninterrupted by the structure. This then allowed the lateral resistance to be placed primarily around the building's perimeter where it would be most effective and efficient while preserving the strong horizontal features that define the architecture of the building. Insulated metal panels spanning above and below the glazing effectively hide the double angle braces.

With the proposed structural redesign of the Office Building's lateral system, the bracing members will be replaced by moment frames, primarily along the exterior grid lines. As a result, the enclosure of the east and west wings will be redesigned with a glazing system to replace the current insulated metal panels. The glazing will be similar to the system used to enclose the central portion of the building, between the east and west wings, where no braced frames are located in the original design layout. The new enclosure will provide more natural light to the interior office and meeting spaces throughout the building, similar to that already provided for the circulation core of the building.

The proposed new glazing system will be researched and carefully assessed with respect to its performance as the building's primary enclosure. The performance will be investigated by looking into the behavior of the barrier and how it affects the movement of heat and moisture through the building enclosure. The proposed layout and placement of the glazing system units will consider both span distances and wind loading conditions.

#### Breadth Two

With the enclosure redesign proposed for Breadth One, a high percentage of the building's exterior envelope will be changed from insulated metal panels to a glazing system. Such a major change could potentially have a significant impact on the conditions and environment inside the Office Building. After researching and analyzing a new enclosure as a part of Breadth One, its overall hygrothermal performance will be assessed and compared to that of the insulated metal panels. Differences in performance will be used to assess the effects of this redesign on the heating and cooling loads of the building and the potential impact on its mechanical systems.

#### MAE Requirements

Means and methods from graduate level coursework will be used throughout the investigation, analysis and design of the depth and breadth work proposed for the senior thesis project in spring 2013. *AE 530 - Computer Modeling of Building Structures* has provided the base

knowledge to effectively model and analyze the Office Building's structural system using ETABS analysis software. The depth study will rely heavily on the coursework from *AE 534 – Analysis and Design of Steel Connections* for the design and specification of the fully restrained moment connections forming the rigid moment frames. The breadth studies will both draw on the material covered in *AE 542 – Building Enclosure Science and Design* for the analysis, assessment and design of the proposed enclosure.

## Structural Depth - Moment Frame Design

For the reasons outlined previously in the "Proposal" section of this report, the depth study will focus on a redesign of the Office Building's lateral force resisting system, which is currently made up of double angle braced frames, to moment frames. Moment frames provide significantly less efficient stiffness with respect to member proportions than braced frames offer, relying on flexural rather than axial stiffness to resist lateral displacements of the structure. With this principle in mind, the preliminary design of the moment frames was based on meeting the serviceability deflection requirements that were assumed to control over the strength requirements of the rigid frames members.

#### Preliminary Drift Considerations

The support conditions at the bases of the moment frame columns have a major impact on the overall stiffness of the structure as well as the design moments on individual frame members. In order to consider the bases fixed, the rotational stiffness of the shallow foundations would need to be assessed and the base plates, anchor rods and piers would need to be specifically detailed to transfer moments from the columns into the foundations and finally to the soil. Even with proper design and detailing, the actual rotational stiffness of the footings and surrounding soils will lead to a condition somewhere between truly fixed and truly pinned. Without looking any further into the foundation details for the purposes of this study, the bases will be considered as pin supports. This assumption will lead to larger structural drifts, especially at story one, and will therefore require larger rigid frame members to limit those deflections. It may be desirable and potentially advantageous to consider and compare the costs associated with the (partially) fixed condition, requiring further foundation detailing and smaller frame members, and the pinned condition, with larger frame members and smaller foundations with less detailing. Based on observations of common industry practices, it is reasonable to consider the design of moment frames utilizing pinned bases where member sizes do not become grossly excessive.

In setting the drift limit for lateral wind loading, which was found to be the controlling source of lateral forces in Technical Report 3, the proposed enclosure redesign breadth study was taken into consideration. With the intention that the entire façade was going to be changed to a curtain wall glazing system, the drift limit was chosen as H/500 (0.32" per story) to account for the greater potential sensitivity of a primarily glass enclosure to lateral displacements. This limit is 20% more restrictive than the industry standard of H/400 that is typically used and will allow for greater flexibility in the selection and layout of the glazing units.

#### Serviceability Wind Loading

The Appendix C Commentary on Serviceability Considerations in ASCE 7-10 states that the wind loading due to nominal 700-year mean recurrence interval (MRI) wind speeds is "excessively conservative" for checking building serviceability requirements and that the load combination

of D + 0.5L + Wa may be used instead. The 10-year serviceability wind speed for the Office Building is mapped at 76 mph (ASCE 7-10, Figure CC-1) and the wind case, including the force multiplier, represented by Wa can be found from provided wind velocities. Taking the ratio of the 10-year MRI wind speed to the 700-year MRI wind speed and squaring it gives the force multiplier/load factor for use in considering serviceability loads of 0.44 (76mph/115mph=0.66,  $0.66^2=0.44$ ). This can be verified by taking the ratio of the serviceability to strength load factors in ASCE 7-05, which also yields 0.7/1.6=0.44. The factor of 0.44 was used in ETABS with the load combination D + 0.5L + 0.44W and allowed for serviceability checks of the model without having to recalculate and input any new loads on an individual basis. The load combination used in the design of the E-W (X-direction) frames was COMB20: 1.0D + 0.5L + 0.44WINDC1X, and the combination used in the design of the N-S (Y-direction) frames was COMB21: 1.0D + 0.5L + 0.44WINDC1Y.

#### Moment Frame Layout

Due to the inherent lesser efficiency in using moment versus braced frames with respect to frame member size/weight, rigid frames are generally the more expensive option. The heavier sections that may be required can lead to higher overall material costs with increased steel tonnage and could also take longer and/or cost more to physically construct. Additionally, the need for column stiffening and its detailing can carry steep costs. Based on the preferences of various industry professionals, going with larger cross sections appears to be preferred to heavily detailed and stiffened members at moment connections where feasible, and when the members are not already exceedingly heavy. Fabrication time for attaching stiffening elements to columns is regarded as the primary source of expense for those stiffened members, as opposed to the cost of the stiffening material itself. Where there is no significant amount of savings in utilizing heavier columns over smaller, stiffened sections, it is often just simply easier to bump up the column size, if the section is not already exceessively large/heavy.

The plan locations chosen for the moment frames are along the perimeter of the Office Building, similar to the locations of a majority of the braced frames in the existing structure (see Figure 23), where they will be most effective at resisting torsional effects induced by wind and seismic lateral loads. There are two three-bay frames along both grids 1 and 10, acting in the east-west (E-W) or X-direction and a 5-bay frame along both grids A and K, acting in the northsouth (N-S) or Y-direction. See Figure 24 for proposed moment frame locations, marked by red lines. The lateral design moved forward having only two lines of rigid frames acting in each direction with the intention of using larger beams and columns, but a lesser overall number of frames. This decision was made to reduce the labor costs and time involved in requiring a much greater number of moment connections in additional frames. All six of the individual frames extend the entire height of the building. See Figures 27 and 28 for frame elevations.







Figure 24: Proposed Moment Frame Layout



Figure 25: 3D View of Existing Braced Frames ETABS Model



Figure 26: 3D View of Proposed Moment Frames ETABS Model



Figure 27: E-W Rigid Frames at Grids 1 and 10



Figure 28: N-S Rigid Frames at Grids A and K

In an attempt to avoid the need for transverse plate stiffeners and doubler plates for potential cost savings, initial trials of moment frame columns involved the selection of moderately heavy W14 columns. The four identical E-W frames were designed first, using ETABS to calculate the story wind drifts of each trial. W14x145 columns and W18x35 beams were selected for the preliminary frames. Story drifts on the lower levels exceeded the limit while the upper stories were well under 0.32" in relative lateral displacement of the floor/roof diaphragms.

As is the case for the existing columns in the Office Building, the new moment frame columns will also be spliced at 4'-0" above the third floor. At this height above the finish floor elevation, the connection will still be easily accessible to erectors for construction purposes and it will also need to resist smaller flexural loads than if it were nearer to the floor, since it will be closer to the inflection point. Columns are not typically able to be easily or reasonably transported to the construction site in lengths of more than about three stories. Splicing also allows for the reduction to a smaller section above the connection, where axial and flexural demands become smaller.

With the decision to splice the columns at about mid-height of the building, the lower column sizes were bumped up in the ETABS model to limit the drifts of the lower stories. The second and third floor beams were also upsized. Using a W14x233 column size, drifts became very close to meeting the required limit. With W24x84 beams at floor two and W18x55 beams at floor three, the first level story drift in the E-W direction came out to be 0.3204" (=0.320" when taken to three digits) based on the second floor diaphragm displacement output from ETABS. The drifts of all stories other than level one were significantly smaller and well under H/500. However, if the W18x35 beams at the roof level are made even one size smaller, the first story drift will exceed the limit. With the E-W frames proportioned as stated and shown in Figure 29, each member is sized to the smallest section possible to meet the serviceability deflection requirements without a further re-configuration of all, or at least multiple, frame members.

|              |                                                                                  |        |             |                             |   |             |          |                      | 3      |              | )      | 1<br>K            |
|--------------|----------------------------------------------------------------------------------|--------|-------------|-----------------------------|---|-------------|----------|----------------------|--------|--------------|--------|-------------------|
| T            | W18X35                                                                           | W18X35 | T<br>W18X   | (35                         | ſ | Γ           | T        | W18X35               | W18X35 | Ţ            | W18X35 | STORY5            |
| W14X145      | 99<br>84<br>84<br>84<br>84<br>84<br>84<br>84<br>84<br>84<br>84<br>84<br>84<br>84 | W18X35 | W14X145     | 05<br>W14X145               |   | W14X145     |          | M14X145<br>W14X145   | W18X35 | W14X145      | W18X35 | 5147142<br>STORY4 |
| W14X145      | M18X32                                                                           | W18X35 | W14X145     | 000<br>W14X145              | - | W14X145     |          | W14X32               | W18X35 | W14X145      | W18X35 | STORY3            |
| 4X233314X145 | M18X22<br>4X29<br>814X145                                                        | W18X55 | 4X23014X145 | 55<br>4X2 <b>30</b> 814X145 |   | 4X2%814X145 |          | 4X2 <b>30</b> 14X145 | W18X55 | 4X230314X145 | W18X55 | 4X230214X145      |
| W14X233W     | W24X84                                                                           | W24X84 | W24X        | 8)<br>W14X233W1             |   | W14X233W    |          | W14X233W             | W24X84 | W14X233W1    | W24X84 | STORY1            |
| W14X233      | ★<br>₩14X233                                                                     |        | W14X233     | W14X233                     | Ť | W14X233     | 007/11/1 | W14X233              |        | W14X233      |        | BASE              |

Figure 29: E-W Rigid Frame Member Sizes

After sizing the members of the four E-W direction frames, the two N-S (Y-direction) frames were modeled in ETABS with the same column sections and beam sizes at each floor as those acting in the X-direction. With the first story drift slightly exceeding 0.32", the beams at the second and third floors were adjusted. The beams were bumped up to W24x117 at floor two and W24x76 at floor three. Keeping all other members the same as the X-direction frames, the first level story drift in the N-S direction came out to be 0.3202" (=0.320" when taken to three digits). See Figure 30 for a frame elevation showing member sizes. See Appendix E for story drifts.
| 8            |                      |                    |          | (7)<br>K    | К<br>К | 8     | б<br>К       |                               | 8       | ЗК           |          |                              |                |
|--------------|----------------------|--------------------|----------|-------------|--------|-------|--------------|-------------------------------|---------|--------------|----------|------------------------------|----------------|
|              | Г<br>•               | W18X35             | W18X35   | Ţ           | w      | 8X35  | T<br>•       | W18X35                        | W18X35  | T            |          |                              | <u>STORY5</u>  |
| W14X145      | W14X145              | M14X145<br>W14X145 | W18X35   | W14X145     | W      | 8X35  | W14X145      | M14X32                        | W18X35  | W14X145      |          | W14X145                      | <u>STO</u> RY4 |
| W14X145      | W14X145              | M14X145<br>W14X145 | W18X35   | W14X145     | w      | 8X35  | W14X145      | M14X32                        | W18X35  | W14X145      |          | W14X145                      | STORY3         |
| 4X230814X145 | 4X2 <b>3</b> 814X145 | 4X23814X145        | W24X76   | 4X23014X145 | w      | 24X76 | 4X230814X145 | 4X2 <b>33</b> 14X145          | W24X76  | 4X230814X145 |          | 4X2 <b>3</b> <u>8</u> 14X145 | STORY2         |
| W14X233 W1   | W14X233 W1           | W24X117<br>W24X117 | W24X117  | W14X233 W1  | W2     | 4X117 | W14X233W1    | 0 %8233<br>W14X233<br>W24X117 | W24X117 | W14X233W1    |          | W14X233 W1                   | STORY1         |
| W14X233      | W14X233              | W14X233            |          | W14X233     |        |       | W14X233      | W14X233                       |         | W14X233      |          | W14X233                      |                |
| 4            | <del>↓ →</del> γ     | <u>k</u> 2         | <u> </u> |             |        |       |              |                               |         |              | <b>X</b> |                              | BASE           |

Figure 30: N-S Rigid Frame Member Sizes

The details of the splice connections between the W14x145 and W14x233 columns will not be covered or specifically designed in this report. The splice connections would be similar to that shown below in Figure 31, which is a detail of an existing splice between a W12x58 and a W12x106 column used in the Office Building. The bolted flange-plated splices would be designed in a very similar manner to the flange-plated moment connections that are covered later in this depth study. To account for the difference in depths of the moment frame columns being spliced together, filler plates and shim plates will need to be used to level the flange plates and provide effective transfer of the column moments.



Figure 31: Typical Column Splice Detail (Image Credit: Larson Design Group)

### Member Strength Assessment

After designing the moment frames to control drifts for wind loading serviceability conditions, the frames were checked for strength requirements using ETABS to find design moments and forces. Wind loads for strength design were calculated as a part of Technical Report 3 and were found to be the controlling lateral load source for the Office Building. Load cases and combinations can be found in the "Loads, Cases and Combinations" section of this report. However, the design of the moment frames to limit drifts to H/500 had a significant impact on the period of the building, reducing the first three building modes by more than half of what they were for the braced frame lateral system (see Figure 32). Seismic forces were recalculated and reported for the shorter periods. There was an 18% increase in the seismic base shear, but the increased seismic loads are still significantly smaller than the design wind loads and will not control the design of the moment frames for strength. Refer to Figures 19 -20 and Appendix F for the new seismic forces and base shear calculations, respectively.

| Office Building Modes |            |              |  |  |  |  |  |  |
|-----------------------|------------|--------------|--|--|--|--|--|--|
| Mode                  | Period (s) | Direction    |  |  |  |  |  |  |
| 1                     | 0.4125     | N-S (Y)      |  |  |  |  |  |  |
| 2                     | 0.3998     | E-W (X)      |  |  |  |  |  |  |
| 3                     | 0.3238     | Rotation (Z) |  |  |  |  |  |  |

Figure 32: Office Building Modes

Second-order effects on the structure were assessed using the direct analysis method in ETABS. In order to accurately account for the second-order influence on the structure, an iterative P- $\Delta$  analysis was conducted based on specified loads and load combinations in the model. The P- $\Delta$  load combination to base the second-order analysis on was defined as 1.2D + 0.5L + 0.5S in the analysis parameters. Because the ETABS model previously used in Technical Report 3 used mass definitions with a non-iterative second-order analysis, new gravity loads had to be defined and carefully assigned in the updated model. With the intention of using the ETABS model to assess only lateral load case effects on the structure, the beams of the moment frames were not directly loaded with uniform gravity forces. Instead, gravity loads in the building not going directly to a moment frame column were lumped together and applied, at each story, to two leaning columns arbitrarily placed at grid points near the center of the building (see Figures 24 and 26). Thus, the contribution of all gravity loads in the building to the second-order response of the structure will be accounted for.

Second-order effects on structural stability were assessed in accordance with Chapter C of AISC 360-10. As required by Chapter C, the stiffnesses of all lateral stability members were adjusted by a factor of 0.80, producing a steel elastic modulus of 23,200 ksi for use in determining required strengths. With the stiffnesses adjusted, story drifts were recorded for first-order effects only and also considering second-order effects. The ratio of second to first-order drifts

at each story and in each direction was found to be less than 1.7 (see Appendix E). Along with the results of this ratio, the fact that all columns are vertical and that less than one-third of the total gravity load of the structure is supported by moment frame columns in either direction of analysis, P- $\delta$  effects on the response of the structure are permitted to be neglected. Additionally, because the ratio above is less than 1.7, it is permitted to apply notional loads only in gravity-only load combinations and not where other lateral loads are already represented.

As previously mentioned, the primary ETABS model was supposed to be used in assessing only lateral load case effects on the structure, including gravity loads purely to determine accurate second-order effects. Two additional ETABS models were created, with one representing a single E-W moment frame and the other, a single N-S frame. Creating separate models to consider gravity-only cases with notional loads and also to isolate the gravity load effects for the lateral load cases, which were assumed to control the moment frame member strength designs, helped to prevent the primary lateral model from becoming too cluttered with load assignments. In the single-frame models, ASCE 7-10 load combinations 2), 1.2D + 1.6L + 0.5S, and 3), 1.2D + 1.6S + 0.5L, were checked with applicable notional loads applied at each story. Also, load combination 4), 1.2D + 1.0W + 0.5L + 0.5S, was checked, without any wind forces actually applied in the single-frame model. The results of the latter load combination in the single-frame model with the primary lateral system model results.

Gravity load forces, moments and reactions were taken from the single-frame models so that only moments and forces due to lateral wind loading (including P- $\Delta$  effects) were taken from the results of the primary lateral ETABS model. When combined with the gravity analysis results of the lateral load case, 1.2D + 1.0W + 0.5L + 0.5S, from the single-frame models, the controlling wind load combinations in the primary lateral model (for the E-W frames and N-S frames of COMB6 and COMB7, respectively) controlled over the gravity-only load cases with notional loads applied, as analyzed in the single-frame models. Pattern live loading was also considered for each load case in the single-frame models.

To check the validity of the results from ETABS, a portal analysis was performed for one of the E-W moment frames. One quarter of the resultant wind load acting at each story was applied to each level and distributed throughout the frame to determine the approximate magnitudes of moments that should be expected from the ETABS output. The portal results were then compared to the first-order ETABS results for selected beams and columns. All values were within 25% of each other and a majority of the values were within about 20%. Generally, most values being within 20% or less of each other between the two methods is acceptable and indicates reasonable computer program results. Refer to Appendix G for the portal analysis results and comparison.

An assessment of the second-order results being calculated by ETABS was also made with a quick, approximate second-order hand calculation.  $B_1$  and  $B_2$  multipliers were calculated, in accordance with Appendix 8 of AISC 360-10, and applied to the first-order results taken from

ETABS. The results from the hand calculated approximation and the actual second-order ETABS output were nearly identical (see Appendix H).

After validating the results obtained from ETABS by hand, the rigid frame members were checked to see if they would meet the strength requirements determined from the direct analysis method. Representative and critical members of the frames acting in each direction were checked by hand for purely flexural and combined axial and flexural conditions. The nominal strengths of all members that were checked exceeded their respective required design strengths. See Appendix I for details of the member check calculations.

#### Moment Connection Design

With the frame member sections finalized, the moment connections can be designed and detailed. Since bolted connections are quicker to erect and less costly than field-welded connections and bolting is typically preferred to welding on site when possible, bolted flange-plated connections will be used for the fully restrained moment connection type in this design. Shear capacity in the connections will be provided by single-plate shear tabs. The flange plates and shear tabs can be shop-welded to the column flanges and then transported to the site already partially assembled. The beams can then be lifted into place and bolted to the single and flange plates on site to save money and time on assembly.

Several critical and representative rigid frame joints were selected to design and detail the fully restrained moment connections for. Connections were specifically designed for the following joint locations: J-10 @ level 4, J-10 @ level 2, K-10 @ level 2, K-4 @ level 2 (see Figures 33 and 34 for joint locations). Additionally, in lieu of detailing the moment connection at joint K-8 @ level 4, a quick check was performed for panel zone shear to see if there were any column stiffening requirements at that location, where the greatest sum of moments going into the upper W14x145 column via the beams on either side occurred. The need for any column stiffening was effectively avoided in all moment frames due to the adequate column web shear areas provided by the heavy columns.



Figure 34: N-S Frame - Selected Joints for Moment Connection Design/Detailing

Connection J-10 @ level 4 was selected to represent one of the smaller upper joints where W18x35 beams frame into a W14x145 column and carry smaller moments. Connection J-10 @ level 2 had the greatest moments of any interior beam-column joint acting in the E-W (X-

direction) frames and was, therefore, a concern for panel zone shearing. Connection K-10 @ level 2 had the single greatest moment framing into one side of a column of any of the E-W frame joints, and required thicker flange plates and more bolts than were detailed for the interior connections at the same level. Finally, connection K-4 @ level 2 was selected as it was subjected to the largest sum of moments of any interior beam-column joint in the N-S direction frames, requiring relatively large/heavy flange plates. Due to the large sum of moments about the joint, panel zone shear was also a concern. Connections for columns J-10 and K-4, both to the second floor beams in either direction, are detailed below in Figures 35 and 36 and represent typical moment connection detailing for the rigid frames. Moment connection design calculations can be found in Appendix J.



Figure 35: Bolted Flange-plated FR Moment Connection to Second Floor Beams at J-10



Figure 36: Bolted Flange-plated FR Moment Connection to Second Floor Beams at K-4

### Breadth One - Building Enclosure Redesign

With the redesign of the lateral force resisting system to moment frames that was investigated for the depth study, there are no longer structural braces that must be hidden behind the insulated metal panels above and below the windows on each floor. Therefore, the enclosure redesign will focus on opening up the perimeter of the building by getting rid of the existing insulated metal panels and switching to an all-glazed curtain wall system. This change will allow a lot more light to reach the interior office and meeting spaces in the Office Building. The exterior aesthetics will also be greatly influenced as the insulated metal wall panels currently make up a significant portion of the facade. An appropriate layout will be selected for the glazing that will be used and the new system will also be analyzed with respect to its heat and moisture transfer performance.

### Enclosure System Selection

Some early glazing system research was conducted and those options were compared with the two existing systems used on the Office Building. The two types currently in use for the building are Kawneer Trifab VG 451T and Kawneer 1600 Wall System 1. Based on the strong thermal and solar performance data for the Kawneer systems and current glazing (see Figure 37), which are nearly identical to each other since they use the same insulated glass units, the decision was made to stick with one of the existing options. After comparing Kawneer catalog data for both systems, the 1600 Wall System 1 was chosen as a better fit for the curtain wall application being considered. The 451T was primarily intended for use with relatively short, single-spans. The 1600 Wall System has much better performance with higher span distances and is intended to be used for multi-span layouts.

|                                                                                                                                                               | <u>Performance Data Comparison*</u> |                                       |       |                    |         |          |       |               |                      |            |              |               |      |      |      |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------|---------------------------------------|-------|--------------------|---------|----------|-------|---------------|----------------------|------------|--------------|---------------|------|------|------|
|                                                                                                                                                               | ID# Product Description N           |                                       | Notes | Thick<br>ness      | Tran    | smittanc | e (%) | Re<br>Visible | flectance<br>Visible | %<br>Solar | U-fa<br>(U-v | ctor<br>alue) | SC   | SHGC | LSG  |
|                                                                                                                                                               |                                     |                                       |       | (in.) <sup>f</sup> | Visible | Solar    | UV    | (out)         | (in)                 | (out)      | Win.         | Sum.          |      |      |      |
| Outboard: 300 1/4" Oldcastle BuildingEnvelope <sup>™</sup> SunGlass® Low-E #2                                                                                 |                                     | a                                     |       |                    |         |          |       |               |                      |            |              |               |      |      |      |
| Air Space:                                                                                                                                                    | 2                                   | 1/2" Black Anno Spacer, Argon Filled  |       | 0.944              | 50      | 20       | 4     | 8             | 11                   | 28         | 0.23         | 0.20          | 0.28 | 0.24 | 2.08 |
| Inboard:                                                                                                                                                      | 3016                                | 1/4" Clear Float                      | a     |                    |         |          |       |               |                      |            |              |               |      |      |      |
| Outboard:         300         1/4" Oldcastle BuildingEnvelope™ SunGlass® Low-E #2           Air Space:         2         1/2" Black Anno Spacer, Argon Filled |                                     | a                                     |       |                    |         |          |       |               |                      |            |              |               |      |      |      |
|                                                                                                                                                               |                                     |                                       | 0.944 | na                 | na      | na       | na    | na            | na                   | 0.23       | 0.20         | na            | na   | na   |      |
| Inboard:                                                                                                                                                      | 3016                                | 1/4" Clear Float with Ceramic Frit #4 | a     |                    |         |          |       |               |                      |            |              |               |      |      |      |

#### ъ . .

Figure 37: Glass Performance Data (Image Credit: Silling Associates, Inc.)

#### System Layout/Configuration

The Kawneer 1600 system is used to span 13'-4" between floor elevations in the original layout of the Office Building's facade, enclosing the central connecting portion of the building (see Figures 38 and 39). To determine whether or not this system is able to span that same distance between floors near the corners of the building where the wind loads are greater, the Components and Cladding (C&C) wind pressures had to be calculated for those critical

locations. Using ASCE 7-10, Chapter 30, Part 3 for buildings with a mean roof height greater than 60', new GCp values were obtained. Smaller GCp values were permitted by an exception in Part 3 for a building height to width ratio of less than or equal to 1. In the corner zones, the maximum design pressure was calculated as -42.7 psf (refer to Appendix K for load calculations). Based on this loading and the Kawneer 1600 wind load charts for a twin span application, the maximum spacing of the vertical aluminum mullions was found to be 2'-8" OC. The mullions are 2.5" thick (2.5" sightlines) and 6" deep.



Figure 38: View of Existing Front Façade (Image Credit: Silling Associates, Inc.)

Spandrel glass with a dark ceramic frit on the #4 interior surface is used to hide components of the building's structure. At each column location, spandrel strips of 18" in width continue for the height of the building to conceal the heavy columns beyond. Horizontal strips of spandrel glass, 3'-0" tall, are used to hide the floor system and heavy moment frame beams. The tops of these strips align with the finish floor elevation and extend downwards at floors 2 though 5. A similar spandrel layout is used at the rooftop elevation, except that the spandrel units also extend up past the roof to form the parapet. Between the rows of horizontal spandrel glass, rows of SunGlass tinted vision glass extend vertically 10'-4" up from the floor. Figures 39 and 40 have been provided together below for a visual comparison of the existing and proposed enclosures. In Figure 40, spandrel glass has been shown darker and the vision glass lighter. Refer to Figure 38 above to see the Kawneer 1600 system in place on the existing building (central all-glazed portion).



Figure 40: Front Façade Elevation showing Proposed Curtain Wall System

#### **Barrier Performance Analysis**

The performance of the enclosure as the building's primary barrier to the outside environment was assessed by looking into its resistance to heat and vapor flow. Thermal resistance ( $R_T$ ) values and vapor resistance totals for four different exterior wall compositions were calculated to assess and compare the new proposed enclosure with the existing layout. The  $R_T$ -values and vapor resistances ( $R_V$ ) found for each of the four cases are as follows:

- Kingspan 400 V-Wave Insulated Metal Panels (IMPs) Wall Section
  - R<sub>T</sub>: 26.3 hr-ft<sup>2</sup>-°F/Btu
  - $R_V$ : 6.70 hr-ft<sup>2</sup>-inHg/gr
- Kawneer 1600 Wall System 1 Spandrel Glass Wall Section
  - R<sub>T</sub>: 17.9 hr-ft<sup>2</sup>-°F/Btu
  - R<sub>v</sub>: 4.48 hr-ft<sup>2</sup>-inHg/gr \*(value only applies to silicone sealants at window joints)
- Kawneer 1600 Wall System 1 Vision Glass Wall Section
  - R<sub>T</sub>: 3.35 hr-ft<sup>2</sup>-°F/Btu
  - R<sub>v</sub>: 4.35 hr-ft<sup>2</sup>-inHg/gr \*(value only applies to silicone sealants at window joints)
- Kawneer 451T Vision Glass Wall Section
  - R<sub>T</sub>: 3.85 hr-ft<sup>2</sup>-°F/Btu
  - R<sub>v</sub>: 4.35 hr-ft<sup>2</sup>-inHg/gr \*(value only applies to silicone sealants at window joints)

R<sub>T</sub>-values for the Kingspan 400 IMPs and Kawneer 1600 – Spandrel Glass wall sections, which both have a series of wall system components backing them up, were calculated using the isothermal planes method to account for varying wall compositions along the length of each particular wall (such as studs occupying the batt insulated cavity space at 24" OC). The planes method produces an average resistance value for components that overlap so that they can be accounted for accurately in a single analysis. The method was chosen as it is most accurate when dealing with envelopes containing highly conductive materials (like metal studs) that penetrate insulation.

For the two cases of vision glass units and the spandrel glass layer of the Kawneer 1600 system, the center-of-glass (COG) U-value provided by the manufacturer was adjusted to get a more accurate U-value for the system as a whole using the appropriate Kawneer thermal charts. By first finding the proportion of vision area to total area, the corresponding system value can then be located on the chart. For all cases, the ratio of vision to total area was about 0.9.

There was some difficulty in determining permeance properties for the wall sections containing glass. Without finding a perm rating for the insulated glass units or for glass at all, the water vapor transmission was assumed to be negligible. Instead, the vapor resistance was found for the silicone window sealant, which acts as the weakest link for vapor penetration through any

portion of the glazing system. Because this small strip area is only located around the perimeter of the windows, it should not be directly compared to the higher reported vapor resistance of the IMP wall section and made to look inferior. In reality, the curtain wall system has a greater overall resistance to water vapor transmission due to the properties of the glass and aluminum mullions that should be considered along with the weak link properties of the silicone.

Details of the wall systems and their make-up can be seen broken down for each wall section in Appendix L along with the detailed calculations of thermal and vapor resistances reported above. From the results of the barrier analysis, it is apparent that the enclosure redesign will cause the overall thermal resistance of the building to go down, as the IMPs with the greatest thermal resistance values will be replaced by Kawneer 1600 Spandrel and Vision wall sections which both have lower R<sub>T</sub>-values. However, the overall vapor resistance of the building will increase as the glazing is made to enclose the entire building perimeter.

### Breadth Two - Mechanical Loads and Systems Impact

The hygrothermal properties investigated for the barrier performance analysis in the first breadth study will now be used to determine what effects the building enclosure redesign will have on the heating/cooling loads of the building. The potential impact on the mechanical systems will also be assessed.

#### Heating/Cooling Load Effects

To see how big of an impact would be made on the mechanical loads of the building with the proposed enclosure redesign, the relative areas of the different enclosure types were first found for both the existing and proposed facade layouts. The areas are as follows:

- Existing Enclosure Areas:
  - IMPs: 23,649 sf
  - 451T: 19,175 sf
  - 1600 Spandrel: 3,457 sf
  - 1600 Vision: 3,355 sf
- Proposed Enclosure Areas:
  - 1600 Vision: 38,276 sf
  - 1600 Spandrel: 11,359 sf

The conductive heating/cooling loads for both designs were found by dividing the areas by their respective  $R_T$ -values. The proportion of proposed to existing conductive loads came out to be 1.70. This means that there would be a 70% increase in the conductive enclosure loads with the new proposed design.

The solar load incurred by the vision glass is directly proportional to the vision glass area. Therefore, the amount that the load will increase is proportional to the increase in total vision glass area. Since the amount of vision glass increases by 70%, so too does the solar load in the Office Building.

#### Mechanical Systems Impact

To determine the impact of the redesign on the building's mechanical systems, the portion of the total load that the enclosure accounts for in the existing design needs to be found. The ten 20-ton Mitsubishi condensing units that serve the Office Building have a total cooling capacity of 200 tons. It is also assumed that the equipment was oversized by about 15%. In that case, the total demand serviced by the condensing units is around 174 tons.

The existing conductive cooling load and solar load need to be found in tons of cooling. Applying a CLTD value taken from ASHRAE, the conductive load comes out to be 29.5 tons. Applying a SC and SCL value, also taken from ASHRAE, the solar load is found to be 65.7 tons. Combining the loads and dividing by the demand of 174 tons, the enclosure driven portion of the total load is close to 55%.

It can now be determined that a 70% increase in the external/façade enclosure loads is equal to about a 40% increase in total demand. With that amount of additional load, an equivalent system would have a required mechanical equipment capacity of 280 tons. Assuming a basic mechanical system costs roughly \$3,000/ton of cooling installed, the minimum additional mechanical equipment costs would be about \$240,000, which is nearly 2% of the total project construction cost of \$11,000,000.

Refer to Appendices L and N for further details and calculations completed for the second breadth study.

### **Conclusion**

The Thesis Final Report consists of a lateral system redesign depth study and breadth studies centered on a redesign of the building enclosure of the Office Building. The structural depth was an investigation into changing the braced frame lateral force resisting system to a moment frame system and designing the frames and rigid connections. Breadth one outlined a redesign of the building enclosure to an all-glazing curtain wall system. It also involved an analysis of the barrier performance of the proposed system, considering heat and vapor flow through the enclosure. Breadth two took a further look into the enclosure redesign by determining what sort of effects the change would have on the heating/cooling loads of the building and how it might impact the mechanical systems.

For the structural depth, four 3-bay moment frames were designed for the E-W direction and two 5-bay frames were designed for the N-S direction. The sizes of the frame members were controlled by the drift limitation set as H/500 under serviceability wind loading (10-year MRI winds). The frames were checked for strength requirements and all members passed that were checked. Critical and representative beam-to-column joints were selected and the moment connections were designed and detailed for those locations. All connections designed were bolted flange-plated type connections. The shear tab and flange plates in this sort of connection can be shop-welded to the column flanges and then the beam can be erected and bolted up on site. Critical columns were checked for stiffening requirements, but all ended up being heavy enough without the need for transverse stiffeners or doubler plates.

The building enclosure redesign for breadth one was undertaken to get rid of the existing insulated metal panels and to open up the Office Building to more light. The selection of the Kawneer 1600 curtain wall system was based on structural as well as thermal and solar performances. A practical layout for the glazing system units was developed. Furthermore, the barrier performance of the proposed and existing enclosure systems was investigated, taking both heat and vapor transfer into account. It was determined that the proposed redesign would result in poorer overall thermal resistance for the building, while also increasing its resistance to vapor transmission.

The performance data found and examined in breadth one was used to analyze the effects of the enclosure redesign on the heating/cooling loads of the Office Building. A 70% increase in the exterior wall enclosure conduction loads and in the solar loads through the vision glass was calculated. Those 70% increases in the envelope loads were found to be equivalent to a nearly 40% increase in total load demand. The mechanical systems would need to be upsized by about 40% in their overall capacity to be able to handle the higher demand.

# Appendix A

|       | Seth Muyer Tech 1- Gravity Loads                                                             | 1/2           |
|-------|----------------------------------------------------------------------------------------------|---------------|
|       | -Dead Loads:                                                                                 |               |
|       | Roof: 1/2" Type B 20 ga wide rib roof deck= 2.14 psf (Vulcraft Deck Cat.)                    |               |
|       | 24K4 @6'OC == 8.4 ptf/6'=1.4 psf (SJI)                                                       |               |
|       | 4" Rigid Insolation = 6 psf                                                                  | in the second |
|       | EPDM = 0.7 pst                                                                               |               |
|       | MEP/Leiling=10 psf                                                                           |               |
| APAD' | Total = 2.14+1.4+6+0.7+10=20.24=720psf                                                       |               |
| W     | Floor: 2/2" the conc. slab on 20 ge. 1/2" composite dock = 39 pst (Vulcraft Deck Cat, 15 VL2 | 0             |
|       | 16K4 @ 3' OC = 7.0 plf(3' = 2.33 psf (GJI)                                                   |               |
|       | Bws/Girders = 7psf                                                                           |               |
|       | MEP/Leiling=10 pst                                                                           |               |
|       | Total= 39+2.33+7+10= 58.33=760 pst                                                           |               |
|       | -Live Loads: ASCE 7-10, Juble 4-1                                                            |               |
|       | Roof=20psf                                                                                   |               |
|       | Floor: Conders above first floor = 80 pst                                                    |               |
|       | Partitions = 20 pst                                                                          |               |
|       | $T_0 T_0 = 20 + 20 = 100 pst$                                                                |               |
|       | -Snow Loads                                                                                  |               |
|       | -Grownd Snow Load: Pg= 30 pst (ASCE 7-10, Figure 7-1)                                        |               |
|       | - Exposure Factor: Ce= 1.0 (Partially Exposed) (Table 7-2)                                   |               |
|       | -Thermal Factor: CE=1.0 (Table 7-3)                                                          |               |
|       | -Impurtance Factur: Is=1.0 (Table 1.5-2)                                                     |               |
|       | -Flut Root Snum Load pg=0.7(1.0)(1.0)(1.0)(30)=21 pst (Fe. 7.3-1)                            |               |
|       |                                                                                              |               |
|       |                                                                                              |               |



# Appendix B

|      | Seth Moyer Tech 1 - Wind Loads                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 1/2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |  |  |  |  |  |
|------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|--|
|      | Wind Loads: (ASCE 7-10 Chapter 27: Wind Loads on Buildings - MWFRS: Direction                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | mal Procedure)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |  |  |  |  |  |
|      | -Risk Category: II (Table 1.5-1)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |  |  |  |  |
|      | -Basic Wind Speed: V=115 mph (Figure 20,5-1A)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |  |  |  |  |
|      | -Wind Directionality Factor: Kd = 0.85 (Table 26.6-1)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | and a subserver a subserver of                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |  |  |  |  |  |
|      | -Expussive Category: C (\$ 26.7.2 # \$26.7.3)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |  |  |  |  |
|      | -Topographic Factor: Kzt=1.0 (\$ 26.8.2)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |  |  |  |  |
| (TW) | -Gust Effect Factor;                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | and and                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |  |  |  |  |  |
| AMPA | Check Approx. Natural Frequency Limitations (\$26.9.2.1)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |  |  |  |  |
|      | h=67ft < 300 ft :: 0K                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |  |  |  |  |
|      | Leff= 135.75 ft =7 h=67 ft = 4(35.75) .: 0k                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | the designed and the second second                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |  |  |  |  |  |
|      | $n_a = 75/h = 75/67 = 1.12$ (Eq. 26.9-4)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |  |  |  |  |
|      | na=1.12≥1.0 Rigid =>G=0.85 (\$26.9.1)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | a construction of the second s |  |  |  |  |  |
| 0    | -Enclosure Classification: Enclosed => Internal Pressure Coeff.: GCpi=±0.18                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | (Table 26.11-1)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |  |  |  |  |
|      | - Valucity Pressure Exposure Coefficients: (Table 27.3-1)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |  |  |  |  |
|      | $K_{h_{x}}K_{z} = 0.85$ (0-15) Fbr. z(ff) $K_{h_{x}}K_{z}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |  |  |  |  |
|      | 0.94 (25) 2 13.33 0.85<br>0.98 (30) 3 26.67 0.95                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |  |  |  |  |
|      | 1.04 (40) 4 40 $1.041.09$ (50) 5 5333 110                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |  |  |  |  |
|      | 1.13 (60) R 66.67 1.16<br>1.17 (70) TOP 74.42 1.19                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |  |  |  |  |
|      | 1.21 (80)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |  |  |  |  |
|      | -Velocity Pressure: 2z=0.00256 KzKztKdV2 (Eq 27.3-1)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |  |  |  |  |
|      | Flr. qz (psf)<br>1 74.48                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |  |  |  |  |
|      | 2 24.46<br>3 27.34                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |  |  |  |  |
|      | 4 29.93<br>5 31.66                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |  |  |  |  |
|      | R 33,38<br>TOP 34,25                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |  |  |  |  |
|      | and a set of the set o | a second and a second a second a second                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |  |  |  |  |  |

|        | Seth Mover                                         | Tech I - Wind Loads                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 2/2                                      |
|--------|----------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------|
|        | -External Pressure Coel                            | fficients: (Figure 27.4-1)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                          |
| 13     | Windward Wall: Cp                                  | 0.8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | · · · · · · · · · · · · · · · · · · ·    |
|        | Leenard Wall: N-                                   | 5=7 135.75/155.33=0.87=7 Cp=-0.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                          |
|        | E                                                  | W=7.155.33/135.75=1.14=7Cp=-0.47 (from into                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | ир)                                      |
|        | Side Wall: Cp=-0.                                  | 7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                          |
|        | Roof: N-5=>h/L=                                    | = 67/135.75 = 0.49 40.5 E-W=>67/155.3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 3-0.43 < 0.5                             |
| CHANNE | Horiz<br>0-3<br>33,5-<br>6,7-1<br>>(3 <sup>1</sup> | 5.7 (1) Cp<br>3.5 -0.9 -0.18<br>67 -0.9 -0.18<br>134 -0.5, -0.18<br>4 -0.3, -0.18                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                          |
|        | - Design Wind Press                                | ures: p=q6Cp-q;(6Cpi) (Eq 27.4-1)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | na an a |
| 0      | Windward Wall: 1                                   | $ \begin{array}{l} F(r) \\ 1 \implies p = 24.46 (0.85)(0.8) - 33.38 (\pm 0.18) = 16.63 \\ 2 \implies p = 16.63 \pm 6.01 \\ 3 \implies p = 27.34 (0.85)(0.8) \pm 6.01 = 18.59 \pm 6.01 \\ 4 \implies p = 29.93 (0.85)(0.8) \pm 6.01 = 20.35 \pm 6.01 \\ 5 \implies p = 31.66 (0.85)(0.8) \pm 6.01 = 21.53 \pm 6.01 \\ R \implies p = 33.38 (0.85)(0.8) \pm 6.01 = 22.70 \pm 6.01 \\ R \implies p = 33.38 (0.85)(0.8) \pm 6.01 = 22.70 \pm 6.01 \\ 0P \implies p = -9.66 (C-p^n) (Eq. 27.4-4) = -9.66 = 34.22 \\ \end{array} $ | ± 6.01<br>15 (1.5) = 51.38               |
|        | Leeward Wall: N<br>E<br>Tu                         | 1-5=733.38(0.85)(-0.5) ±6.01 = -14.19 ±6.01<br>-ψ=733.38(0.85)(-0.47)±6.01 = -13.34 ±6.01<br>DP =>pp = 34.25 (-1.0) = -34.25                                                                                                                                                                                                                                                                                                                                                                                                 |                                          |
|        | S, de Wall : p= 33.3                               | 38 (6,85) (-0,7) ± 6.01 = -19.86 ± 6.01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                          |
|        | Roof: Huriz Dist<br>0-67<br>67-134<br>>134         | $\begin{array}{l} (+) \\ \Rightarrow & p = 33.38(0.85)(-0.9) \pm 6.0  = -25.54 \pm 6.0  \\ \Rightarrow & p = 33.38(0.85)(-0.9) \pm 6.0  = -14.19 \pm 6.0  \\ \Rightarrow & p = 33.38(0.85)(-0.3) \pm 6.0  = -8.51 \pm 6.0  \\ \Rightarrow & p = 33.38(0.85)(-0.3) \pm 6.0  = -8.51 \pm 6.0  \end{array}$                                                                                                                                                                                                                     |                                          |
|        |                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                          |
|        |                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                          |

### Appendix C

Seth Mayer Tech 1 - Seismic Loads 1/2 -Acceleration Parameters: Bldg Site @ 41059'07" N -76033'42" W ·Site Class: D (see Geotech Report) =>Use Equivalent Lateral Force Proced. (\$12.8) - permitted by Table 12.6-1 \* Risk Calogray II (Table 1.5-1) 5= 0.1219 5= 0.054 g (http://eurlhquake.usgs.gov/hazards/designonyps/) -Spectral Response Acceleration Parameters SMS = Fals = 1.6(0.121) = 0.194 g (Eq 11.41) "annaya" Smi=FvSi=2.4(0.054)=0.130g (Eq. 11.4-2) - Design Spectral Addaration Parameters Sos = 243 Sms = 243 (0.194) = 0.129 g (Fa 11.4-3) Sp1=23 Sm1=23 (0.130) = 0.087g (Eq 11.4-4) -Impurtunce Factor: Ie=1.0 (Table 15-2) -Seismic Design Cutegory B (Table 11.6-2) -Response Mudification Coeff.: R=3 for Steel Systems nut Specifically Detailed for Seismic Resistance (Table 12-2-1)  $-T_{1}=6$ - Approx Fund Period: Ta = Cthn = 0.02(67) = 0.468 (Fa 12.8-7) -T= CuTa=1.7(0.468)=0.796 (\$12.8.2)  $C_5 = \frac{5vi/(k/1_c) = 0.129/(3/1) = 0.043}{c_5}$  $S_{p1}/(1-R/I_e) = 0.087/(0.796.3/1) = 0.0364 \ge 0.044(0.129)(1.0) \ge 0.01 = 0.00568 : 0K$ min Son TL/(T2 R/Ie) = 0.087(6)/(0.7962 3/1) = 0.275 => Cs=0.0364

|        | Seth Moyer Tech I - Seismic Loads                                                                                                                                                         | 2/2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|--------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| •      | -Effective Seismic Wt $Flr2-5:(60psft)(0psf)(07015 sf) + 15psf(13.33 ft)(750 ff) = 1,341 K$ $Roof : 20psft(07015 sf) + 15sef(667 ff+775 ft)(035 z5)(2) + 15sef(667 ff+31 ft)(5333 ft)(4)$ | +) +                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|        | $13psf(6,67ff + 1.54 ff)(48.67x2 + 18.67x2 + 65x2) = 463^{K}$<br>$W = 4(1,341) + 463 = 55827^{K}$                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| ÷.     | -Seismic Base Shear: $V = C_S W = 0.0364(5,827) = 212.1 K (Eq. 12.8-1)$                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| CAMMAN |                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|        |                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|        |                                                                                                                                                                                           | a share a san a<br>na sana a san a<br>na san a san a                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|        |                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|        |                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| 3      |                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|        |                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|        |                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|        |                                                                                                                                                                                           | · · · · · · · · · · · · · · · ·                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|        |                                                                                                                                                                                           | $\label{eq:started} \left\{ \begin{array}{l} \sum_{i=1}^{n} \left( \sum_{j=1}^{n} \left( \sum_{i=1}^{n} \left( \sum_{j=1}^{n} \left( \sum_{j=1}$ |
|        |                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|        |                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |

### Appendix D

Tech 3 - Blog Weight & Mass Seth Moyer 1/1 Effective Seismic Wt. Flrs: 60+10 = 70pst Roof: 20pst Ext. Walls: 15psf Wts: Flours 2-5: [2(7021)+2537] 70pst=1,161 K · "OPAINA Ext Walls 2-5: (13.33)(745') 15 psf = 149 K Roof: [2(1021)+2537]20pf=332K Ext Walls @ Root: [(134+17/12)(6.67+7.75)(2)+(52+4/12)(6.67+3.1)(4)+[2(65)+2(18+1/2)+2(49+1/2)[6.67+1.54]] 15pst=> =122K Mass Flos 2-5: (1161+149)/16,579=0.079 kst Mass/Avea: 0.079/32.2/12 3=1.42×10-6 Roof: (332+122)/16,579=0.0274 Ksf Mass/Area: 0.0274/32.2/123 = 4.92 × 10-7

# Appendix E

|       |                                                           |                                                               | lista                                                                | 2 <sup>nd</sup> -Order                                        | Drifts                                                                         |                                                              |        | 1/1 |  |
|-------|-----------------------------------------------------------|---------------------------------------------------------------|----------------------------------------------------------------------|---------------------------------------------------------------|--------------------------------------------------------------------------------|--------------------------------------------------------------|--------|-----|--|
| 0     | -1 <sup>st</sup> -Order D<br>E-W (X-dir)                  | rifts (serv                                                   | iceability)                                                          |                                                               |                                                                                |                                                              |        |     |  |
|       | <u>Story</u><br><u>5</u><br><u>4</u><br>3<br>2<br>1       | <u>A</u><br>1.1913<br>1.0[61<br>0.7845<br>0.5421<br>0.3204    | tory 0.75<br>0.1752<br>0.2316<br>0.2424<br>0.2217<br>0.3204          | ≤ #/500 = 0.3                                                 | 2″ ∴ oK                                                                        |                                                              |        |     |  |
| avant | Story<br>5<br>4<br>3<br>2                                 | ▲ 3<br>10736<br>0.9169<br>0.7048<br>0.5044<br>0.3202          | (tory Drift<br>0.1567<br>0.2121<br>0.2004<br>0.1842<br>0.3202        | <i>≤</i> ₩500=0.3                                             | 82″∴ok                                                                         |                                                              |        |     |  |
| 0     | $= 1^{st} \epsilon 2^{nd} - 0_r$<br>$= E - W(x - d_{1r})$ | der Driff                                                     | s (ultimate of 0.                                                    | 3E)                                                           |                                                                                |                                                              |        |     |  |
|       | <u>Story</u><br>5<br>4<br>3<br>2                          | <u>A15</u><br>3.3845<br>2.8866<br>2.2287<br>1.5401<br>0.9103  | Story Driff<br>0.4979<br>0.6579<br>0.6886<br>0.6298<br>0.9103        | <u>Aznd</u><br>3.7676<br>3.2427<br>2.5322<br>1.7712<br>1.0599 | <u>story Drift</u><br>0.5249<br>0.7105<br>0.7610<br>0.7610<br>0.7113<br>1.0599 | 2 <sup>nd</sup> /15+<br>1.05<br>1.08<br>1.11<br>1.13<br>1.16 | }~1.7  |     |  |
|       | N-5 (Y-dr)                                                |                                                               |                                                                      |                                                               |                                                                                |                                                              |        |     |  |
|       | Story<br>5<br>4<br>3<br>2<br>1                            | <u>⊳15+</u><br>3.0489<br>2.6040<br>2.0018<br>1.4327<br>0.9094 | <u>Hory Pr:Ft</u><br>0.44449<br>0.6022<br>0.5691<br>0.5233<br>0.9094 | <u>Aznd</u><br>3.3818<br>2.9114<br>2.2629<br>1.6416<br>1.0564 | <u>story Dr. Ft</u><br>0.4704<br>0.6485<br>0.6213<br>0.5252<br>1.0564          | 2.9/s+<br>1.06<br>1.08<br>1.09<br>1.12<br>1.16               | }<-1.7 |     |  |
|       |                                                           |                                                               |                                                                      |                                                               |                                                                                |                                                              |        |     |  |
|       |                                                           |                                                               |                                                                      |                                                               |                                                                                |                                                              |        |     |  |

# Appendix F

|            | Seismic Load Check - Moment Frames                                                                                                                   | 1/1     |  |  |  |  |  |  |
|------------|------------------------------------------------------------------------------------------------------------------------------------------------------|---------|--|--|--|--|--|--|
|            | -Approximate fundamental Period                                                                                                                      |         |  |  |  |  |  |  |
|            | $T_{r} = 0.02.8(KT)^{-0.8} = 0.809 c$                                                                                                                |         |  |  |  |  |  |  |
|            |                                                                                                                                                      |         |  |  |  |  |  |  |
|            | $ a^{2}0, 5\rangle - 0.55$                                                                                                                           |         |  |  |  |  |  |  |
|            | $T_{e} = \int (4   _{a} \neq 1.7  (0.5) = 0.85  s$                                                                                                   |         |  |  |  |  |  |  |
|            | $m_{in} \mid T_b = 0.4135$                                                                                                                           |         |  |  |  |  |  |  |
|            | 0.855                                                                                                                                                |         |  |  |  |  |  |  |
| "OVO"      | 1/1-<br>min   Tb= 0.400 s                                                                                                                            |         |  |  |  |  |  |  |
| Ann        | $ S_{05}/(R/T_{o}) = 0.079/3 = 0.043 \ge 0.044(0.109) = 0.0057 \ t \ge 0.01 : 0K$                                                                    |         |  |  |  |  |  |  |
|            | $-C = 5 /(T, P, f_{1}) - 0.007 / (0.013, 2) = 0.0762$                                                                                                |         |  |  |  |  |  |  |
|            | $C_{ij} \times \frac{1}{201} \frac{1}{10000000000000000000000000000000000$                                                                           |         |  |  |  |  |  |  |
|            | $\min  S_{01}   L/(1-R/1e) = 0.087(6)/(0.415-5) =  .01$                                                                                              |         |  |  |  |  |  |  |
|            | 0.043                                                                                                                                                |         |  |  |  |  |  |  |
|            | $-C_{5,\gamma} = 0.087/(0.4.3) = 0.0725$                                                                                                             |         |  |  |  |  |  |  |
| $\bigcirc$ | $\min(0.087(6)/(0.42.3) = 1.09$                                                                                                                      |         |  |  |  |  |  |  |
|            | $-V = C_s W = 0.043 (5827^k) = 250.6^k$ ( $\approx 18\%$ increase from exist, braced frame system)                                                   |         |  |  |  |  |  |  |
|            | => The increased seismic loads are still significantly smaller than the design wind loads an therefore, nut control the design of the moment trames. | d will, |  |  |  |  |  |  |
|            |                                                                                                                                                      |         |  |  |  |  |  |  |
|            |                                                                                                                                                      |         |  |  |  |  |  |  |
|            |                                                                                                                                                      |         |  |  |  |  |  |  |
|            |                                                                                                                                                      |         |  |  |  |  |  |  |
|            |                                                                                                                                                      |         |  |  |  |  |  |  |
|            |                                                                                                                                                      |         |  |  |  |  |  |  |
|            |                                                                                                                                                      |         |  |  |  |  |  |  |
|            | ""你们,你们还不是你,你你们都是你你,你们你不是你?" 化生态分词 化乙基                                                                                                               |         |  |  |  |  |  |  |
|            |                                                                                                                                                      |         |  |  |  |  |  |  |
|            |                                                                                                                                                      |         |  |  |  |  |  |  |
|            |                                                                                                                                                      |         |  |  |  |  |  |  |

# Appendix G

|      |                      |                      | Portal Analysis     |                   |                                      |                       | Vı    |
|------|----------------------|----------------------|---------------------|-------------------|--------------------------------------|-----------------------|-------|
|      | 307K                 | 4.33K                | 35.01K              | 3.72 K            | 35.0 <sup>1K</sup> 4.33 <sup>K</sup> | 35.0 <sup>1K</sup>    |       |
| 9    |                      | 235.0 K              | 2 C 69.71K          | 11 2              | 69.7"K                               | RC 35.01K             | 1     |
|      |                      | 45174                | 5-10.9K             | 4                 | 107K                                 | 4-5/2K                | 1-8-1 |
|      |                      | 35.01K 10.8K         | 69.71K              | 9.23 <sup>k</sup> | 69.71k 10.8 K                        | Jr 35.0 <sup>1K</sup> |       |
|      | [6,0 <sup>K</sup>    | E 86.91K 1           | 86.9 7.86.9         | 11 86.97          | 1 (186.9" 11)                        | 86.9                  | +     |
|      |                      | Z antik              | 1041K               |                   | 104 K                                | 51.9%                 | =     |
|      |                      | -7.18<br>            | 15.6                | 17.0%             | 10411C IT DIC                        | -7 1.78               | 31-1  |
| 0    | 15.5 K               |                      | 121,21% 7121.71%    | 1 121.21/2)       | 7121.2" 11                           | 121.215 51.91         | 4     |
| IPAI | 69,31                | TILL.LIK IV          | 1381k               | IV V              | 1381K                                | 69.31x                |       |
| X    |                      | 4 ID.YK              | \$20.7 K            |                   | =70.7k                               | ===10.4K              | 1-4"  |
|      |                      | 69.3/K 19.3K         | 13818               | 16.6 K            | 138th 19.3k                          | 69.3K                 | 1     |
|      | 14.8*                | 2(156.1-1)           | 156.2 (156.2"       | 11 1562")<br>Ke   | C1562" 1                             | 1562                  | -     |
|      | 86.                  | (IR                  | 174.51              |                   | 174.51K                              | 86.911                | -     |
|      |                      | 12.8K                | = 25.7K             | nalk.             | 25.7k                                | <=+12.8 <sup>k</sup>  | 1347  |
|      | 14.0K                | 2744 11 -            | 274.4% 7274.4       | 21.1              | 1/45 33.4<br>To 274.4 11             | 74415 386.911         |       |
|      | 187.5                | TO IV                | 373.711 (2          |                   | 373.7 IK 3 14                        | Ig75 IK               | 1     |
| 9    |                      | (H)                  | 6                   |                   | 6                                    | (7)                   | 141   |
|      |                      |                      |                     |                   | -                                    |                       | 12    |
|      |                      | Å 15.2™              | AC-50.3             |                   | AC- 50.35                            | A                     | +     |
|      |                      | 16'-2"               |                     | 18'-10"           | 16'-2"                               | +                     |       |
|      | -Compare aartal re   | salts to first-order | FTABS vosalte       | for lovel 1 Jun   | ins & lovel 7 horas                  |                       |       |
|      | - Compare provention |                      | P.(1.9) 10/11/2     | or to co          | mp leve Lycar                        |                       |       |
|      | Member<br>O start    | Portal<br>274.4/K    | ETABS<br>23411K     | 70 Vitt           |                                      |                       |       |
|      | End                  | 274.41               | 304.71K             | 9.94%             |                                      |                       |       |
|      | (2) start            | 274.4 11             | 265.21k             | 3.35%             |                                      |                       |       |
|      | 3 start              | 274.4"<br>274.4"     | 267,915<br>317,41K  | 13.5%             |                                      |                       |       |
|      | End                  | 274.4 <sup>1K</sup>  | 346,2 <sup>tk</sup> | 20.7%             |                                      |                       |       |
|      | (f)                  | 187,5 1K             | 224.31K             | 16.4%             |                                      |                       |       |
|      | 6                    | 373.7 <sup>IK</sup>  | 284.24              | 23.9%             |                                      |                       |       |
|      | = 0                  | 187.5 <sup>lk</sup>  | 228.3 <sup>1K</sup> | 17.9%             |                                      |                       |       |
|      |                      |                      |                     |                   |                                      |                       |       |
|      |                      |                      |                     |                   |                                      |                       |       |
|      |                      |                      |                     |                   |                                      |                       |       |
|      |                      |                      |                     |                   |                                      |                       |       |

# Appendix H

|      | Approximate 2nd-order Check                                                           | 1/1                                                                                                            |
|------|---------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------|
|      | -Check 2nd-order ETABS results at column J-10 with approximation by 1st order amplifi | cation,                                                                                                        |
|      | Logding: 1.20+1.0WINDCIX+0.52+0.55 (at level 1)                                       |                                                                                                                |
|      | Pn=220,1 K+243K=244.4K Int=2201K Pit=243K                                             |                                                                                                                |
|      | M <sub>W</sub> = 0 <sup>1K</sup>                                                      |                                                                                                                |
|      | $M_{244} = 268.7^{14}/11.66'(12 + 1/12) = 284.2^{14}$                                 | hand a start and a start a |
|      | Mine= 2,31K                                                                           | anna an ann an an ann an ann an ann an a                                                                       |
| "OA9 |                                                                                       |                                                                                                                |
| Am   | Cm= 0.6-0.4(0/284.2)=0.6                                                              |                                                                                                                |
|      | $f_{e1} = \frac{\pi^2 (0.8) (29.000) (3000)}{[1.0 (13 + \%_2) (12)]^2} = 25,625^{k}$  |                                                                                                                |
|      | B;= 1-244.4/25,625 = 0.61=1=7 B;= 1.0                                                 |                                                                                                                |
|      |                                                                                       |                                                                                                                |
|      | $P_{mf} = 1.2(5584 - 4110) + 0.5(6486 - 4520) + 0.5(361) = 2,932^{K}$                 |                                                                                                                |
|      | Pstory = 1.2(5384) + 0.5(6486) + 0.5(61) = 10,124 K                                   | have a second to a second                                                                                      |
|      | $R_{m2} = 1 + 0.15(2.932/10.124) = 0.96$                                              |                                                                                                                |
|      | le story = 0.96 (364) / 0.91 = 62,976 K                                               |                                                                                                                |
|      | $B_2 = \frac{1}{1 - \frac{10/124}{62}} = 1.19 > 1$                                    |                                                                                                                |
|      | $-R_{\rm r}=220.1^{\rm K}+1.19(24.3)=2.49^{\rm K}$                                    |                                                                                                                |
|      | $-M_r = 1.0(2.3) + 1.19(284.2) = 340.5^{-1/k}$                                        | a particular production and a second                                                                           |
|      | -From ETABS                                                                           | an an far an de an d |
|      | $\beta_r = 2476^{\kappa} \simeq 249^{\kappa}$                                         |                                                                                                                |
|      | $M_r = 340.8^{1K} \simeq 340.5^{1K}$                                                  | an a                                                                       |
|      |                                                                                       |                                                                                                                |
|      |                                                                                       |                                                                                                                |

# Appendix I

|     |                                                                                                                                                                                | E-W(X-din                                                                                 | )Frame Men                                                                                              | nber Checks                                                             | 1/3            |
|-----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------|----------------|
|     |                                                                                                                                                                                |                                                                                           |                                                                                                         |                                                                         |                |
| 0   | 7                                                                                                                                                                              |                                                                                           |                                                                                                         |                                                                         |                |
|     | 6                                                                                                                                                                              | 3                                                                                         |                                                                                                         |                                                                         |                |
| "OF |                                                                                                                                                                                |                                                                                           |                                                                                                         |                                                                         |                |
| Ame | 1) Lateral<br>Mmax = -117.2 <sup>1K</sup> @ 16.17'<br>Mn = 55.8 <sup>1K</sup> @ 4.04'<br>Mg= -1.86 <sup>1K</sup> @ 8.08'<br>Mc= -59.6 <sup>1K</sup> @ 12.13'                   | <u>Gravity</u><br>-14.9 <sup>ml</sup><br>3.49 <sup>1k</sup><br>5.73 <sup>1k</sup><br>-859 | <u>Total</u><br>-132,1 <sup>IK</sup><br>59.3 <sup>IK</sup><br>3,87 <sup>IK</sup><br>-60.2 <sup>IK</sup> | 12.5(132.1)<br>Cb= 2.5(132.1)+3(59.3)+4(13.87)+3(60.2) = 2,34           |                |
|     | $ \begin{array}{c} L_{b} = 16.17' > L_{r} = 12.3' \\ \underline{2.34\pi^{2}(29,000)} \\ \mathrm{Fer} = \left[ 16.17(12)/1.51\right]^{2} \sqrt{1 + 0.078} \right] \end{array} $ | [ <u>1506</u> ][ <u>[1517(12)</u><br>57:6(17:3 <del>)</del> ][151]                        | 12`<br>=52,2.ksj                                                                                        |                                                                         |                |
|     | #Mn=0.9(52.2)(57.6)/12=225.5                                                                                                                                                   | 1K = Mp=249/K                                                                             | =7 0/Mn = 225,                                                                                          | 5 <sup>1K</sup> >Mu=132.1 <sup>1K</sup> :0K                             |                |
|     | 2) $\frac{16^{2}crel}{M_{mex}^{2} - 95.2''} \approx 18.83''$<br>$M_{A} = 47.8'' \approx 4.71''$<br>$M_{B} = 0.125^{12} \approx 0.421''$<br>$M_{C} = -47.6'' \approx 0.421''$   | Gravity<br>-13.7<br>1.58<br>7.56<br>2.6                                                   | Total<br>-108.91k<br>49.41k<br>7.69 <sup>1k</sup><br>-45 <sup>1k</sup>                                  | 12.5(108.9)<br>C <sub>b</sub> = 2.5(108.9)+3(49.4)+4(7.69)+3(45) = 2,32 |                |
|     | $\begin{array}{c} L_{b} = &  8.83' \times L_{r} = &  2.3' \\ & 2.32 \pi^{2} (29.000) \\ F_{cr} = & [16.83(2)/1.57]^{2} \sqrt{1 + 0.078} \end{array}$                           | 0,506<br>57.6(17.3) [1.57]                                                                | 72<br>= 40.7 ksj                                                                                        |                                                                         |                |
|     | 4Mm=0.9440.7)57.6)/12=175.81K                                                                                                                                                  | = 4Mp=2491K                                                                               | => @Mn=173                                                                                              | 53 <sup>1K</sup> Mu= 1089 <sup>1K</sup> ··OK                            |                |
|     | 3) Lateral<br>$M_{MPAX} = -192.4''^{K} @ 16.17''$<br>$M_{A} = 91.6''^{K} @ 4.04''$<br>$M_{B} = -20''^{K} @ 8.08''$<br>$M_{c} = -97.9''^{K} @ 12.13''$                          | Grov ty<br>-15.71K<br>3.881K<br>5.73'K<br>5.73'K<br>-2.481K                               | <u>Tota</u><br>-208.1 <sup>11k</sup><br>95.5 <sup>rk</sup><br>2.73 <sup>rk</sup><br>-98.9 <sup>rk</sup> | $C_{\rm b} = \overline{2.5(208.1)} = 2.33$                              |                |
|     | Lp=5,9' <lb=16.17'<lr=17.6'< td=""><td></td><td></td><td></td><td></td></lb=16.17'<lr=17.6'<>                                                                                  |                                                                                           |                                                                                                         |                                                                         |                |
|     | 9Mn= 2.33 [420-(420-258)(16.                                                                                                                                                   | 7-5.9)/(17.6-5.9)]                                                                        | = 647.3 <sup>ik</sup> = 42                                                                              | 0 <sup>1K</sup> -> 4My=420 <sup>1K</sup> >My=208,1 <sup>1K</sup> :,0K   |                |
|     | neren harrandenar franzen bir sinder einer diennerdingen standster sind.                                                                                                       |                                                                                           |                                                                                                         |                                                                         | and the second |

| ~ |                                                                                                                                                  |                                                                   |                                                                   |                                                                                                                  |  |  |
|---|--------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------|-------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------|--|--|
|   | 4) <u>Latera</u><br>Mmax=-158.91 °@ 18.83'                                                                                                       | <u>Gravity</u><br>-13.6"k                                         | <u>Total</u><br>-172.5 <sup>1k</sup>                              | 12.5((72.5)                                                                                                      |  |  |
|   | MA=79.7 1%@ 4.71'<br>Mg=0.138'%@ 4.42'<br>Mc=-79.41%@ 14.13'                                                                                     | 1.67 <sup>1k</sup><br>7.64 <sup>1k</sup><br>2.68 <sup>1u</sup>    | 81.41K<br>7.78 <sup>1K</sup><br>-76.7 <sup>1K</sup>               | <br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br> |  |  |
|   | $\begin{array}{c} L_{b} =  8.83' \times L_{r} = 17.6'\\ 2.7 \times \frac{3}{2} (24000)\\ F_{cr} = [18.83(0)/2]^{27} \sqrt{ +0.078 } \end{array}$ | [1.66<br>[8.3(175]] [8.83(12)] <sup>2</sup><br>2                  | = 72.2 ksi                                                        |                                                                                                                  |  |  |
|   | dMn=0.9(72.2)(98.3)/12 = 532.                                                                                                                    | 3" = 9Mp = 420"                                                   | => 9/1n= 420                                                      | <sup>11K</sup> =Mu=172.5 <sup>11K</sup> : OK                                                                     |  |  |
|   | 5) Lateral<br>from = 33.9k                                                                                                                       | Gravity                                                           | <u>Total</u><br>339 K                                             | $l_{e1} = \pi^2 (9.8) (29,000) (2.370) / (16.17(12))^2 = 14,413^{k}$                                             |  |  |
|   | Mmax= -401 16 @ 16.17'<br>Ma= 175.21 8 @ 4.04'                                                                                                   | -14.7"K<br>14.13"K                                                | -415.7 <sup>110</sup><br>179.3 <sup>110</sup>                     | B1 = 1/(1-33,9/14,413) ≥1 =7 B1 =1.0                                                                             |  |  |
|   | MB = -16.71K @ 8.08'<br>Mc = -209.21K @12.13'                                                                                                    | 6.25 <sup>1K</sup><br>-0.187 <sup>1K</sup>                        | -10.51K<br>-209.41K                                               | $C_{b} = \frac{12.5(415.7)}{2.5(415.7) + 3(109.4)} = 2.3$                                                        |  |  |
|   | Lp= 6.89'< Lb= 16.17' < Lr=20.3'                                                                                                                 |                                                                   |                                                                   |                                                                                                                  |  |  |
|   | \$M# = 2.31[840 - 24.2(16.17 - 6.8                                                                                                               | 9]]=1422 1k < pMp=8                                               | 340 <sup>1k</sup> =7 4                                            | 1n=840 <sup>™</sup>                                                                                              |  |  |
|   | 33.9/775 - 0.04 - 02                                                                                                                             |                                                                   |                                                                   |                                                                                                                  |  |  |
|   | Interaction 33.9/775/2 + 41                                                                                                                      | 5.7/840 = 0.52 < 1.0                                              | .∲∙ OK                                                            |                                                                                                                  |  |  |
|   | 6) Lateral<br>Mmax - 306.11K @18.83'                                                                                                             | Gravit<br>-12.71K                                                 | <u>Tota</u><br>-318.8 IK                                          | 12.5 (3(8,8)                                                                                                     |  |  |
|   | MA= 154 <sup>K</sup> @ 4.71′<br>MB= 0.55 <sup>K</sup> @ 9.42′<br>Mc= -152.9 <sup>K</sup> @ 14.13′                                                | 2,29 <sup>1</sup> K<br>8,36 <sup>1</sup> K<br>3,51 <sup>1</sup> K | 156.3 <sup>1K</sup><br>8.91 <sup>1K</sup><br>-149.4 <sup>1K</sup> | ( <sub>6</sub> =2,5(318,8)+3(156,3)+4(6,91)+3(149,4) = 2,28                                                      |  |  |
|   | Lp=6.89' <lb=18.83'<lr=20.< td=""><td>3′</td><td></td><td></td></lb=18.83'<lr=20.<>                                                              | 3′                                                                |                                                                   |                                                                                                                  |  |  |
|   | $\#_{n}^{k} = 2.28[840 - 24.2(18.83 - 6.89]] = 1256^{ik} < \#_{N}^{k} = 840^{ik} = 9\#_{n}^{k} = 840^{ik} > M_{u} = 318.8^{ik} :: OK$            |                                                                   |                                                                   |                                                                                                                  |  |  |
|   | 7) Lateral<br>Pmax=4.4K                                                                                                                          | Gravity<br>79 K                                                   | Total<br>83.4 K                                                   | Per= 7 208/bg000 (1710) / [13.33(12)] 2= 15.302 k                                                                |  |  |
|   | Mmax = 1021k @ 0'<br>Ma= 52,11k @ 3.33'                                                                                                          | 4.05" ×1.01<br>2.25" ×1.01                                        | 106.1 <sup>IK</sup><br>54.4 <sup>IK</sup>                         | B <sub>1</sub> =V(1-83.€/15,302) = 1.01 >1.0 = 2 B <sub>1</sub> ≤ 1.01                                           |  |  |
|   | Mg= 2.34" @ 6.66<br>Mc= -47.4" @ 9.99'                                                                                                           | 0.44 <sup>K</sup> ×1.01<br>-1.37 <sup>K</sup> ×1.01               | 2.78"<br>-48.8 <sup>1k</sup>                                      | $\zeta_{b} = 2.5(1061) + 3(544) + 4(2.78) + 3(43.8) = 2.26$                                                      |  |  |
|   | Lb= 13.33' < Lp= 14.1' => 9                                                                                                                      | Mn=975 <sup>1K</sup>                                              |                                                                   |                                                                                                                  |  |  |
|   | 83.4/1710=0.0540.2                                                                                                                               |                                                                   |                                                                   |                                                                                                                  |  |  |
|   |                                                                                                                                                  | Sanda a management of                                             |                                                                   |                                                                                                                  |  |  |

|      |                                                                                                                  | -                                                                                    | 3/3 |
|------|------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------|-----|
|      | 8) Lateral Gravity Iatal                                                                                         | Rei=π <sup>3</sup> (0.3)(29,000)(3010)/[12,33(12)] <sup>2</sup> =31,482 <sup>k</sup> |     |
| 9    | Amax                                                                                                             | B;=1/(1-247.6/31,482)=1.01>1.0=>1B;=1.01                                             |     |
|      | Lb=12.33'zLp=14.5' =70/Mn=1640'k                                                                                 |                                                                                      |     |
|      | 2476/2803 = 0.09 < 0.2                                                                                           |                                                                                      |     |
|      | Interaction: 247.6/2803/2 + 340.9/1640 = 0.25-10 :.OK                                                            |                                                                                      |     |
|      |                                                                                                                  |                                                                                      |     |
| "OVo |                                                                                                                  |                                                                                      |     |
| AMI  |                                                                                                                  |                                                                                      |     |
|      |                                                                                                                  |                                                                                      |     |
|      |                                                                                                                  |                                                                                      |     |
|      |                                                                                                                  |                                                                                      |     |
|      |                                                                                                                  |                                                                                      |     |
|      |                                                                                                                  |                                                                                      |     |
|      |                                                                                                                  |                                                                                      |     |
|      |                                                                                                                  |                                                                                      |     |
|      | and the second |                                                                                      |     |
|      |                                                                                                                  |                                                                                      |     |
|      |                                                                                                                  |                                                                                      |     |
|      |                                                                                                                  |                                                                                      |     |
|      |                                                                                                                  |                                                                                      |     |
|      |                                                                                                                  |                                                                                      |     |
|      |                                                                                                                  |                                                                                      |     |
|      |                                                                                                                  |                                                                                      |     |
|      |                                                                                                                  |                                                                                      |     |
|      |                                                                                                                  |                                                                                      |     |
|      |                                                                                                                  |                                                                                      |     |

|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | N-5                           | 5(Y-dir) Frame Men   | nber Checks                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |  |  |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------|----------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                               |                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                               |                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                               |                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |  |  |
| 5 6 8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                               |                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |  |  |
| 3 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                               |                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                               |                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |  |  |
| 7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                               |                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                               |                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |  |  |
| 11-6" 19'-0" 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 9'-5" 14'-0"                  | 15-0"                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |  |  |
| Diateral                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Gravity                       | Total                | R==+402/29000/2540/(115/12)2=42512                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |  |  |
| Pmax=52.5K                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | OK                            | 52.5 K               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |  |  |
| Mmax=483.6 @0<br>M+=2535 ** @2.88'                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | -9.39 "<br>4.07 <sup>ik</sup> | 474.2"<br>957.5"     | B <sub>1</sub> = 1/(1-52.5/42,563)=1 =7 B <sub>1</sub> = 1.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |  |  |
| MB=24.2 1K @ 5.75'                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 6.76 <sup>1</sup> K           | 31.0110              | 12.5(474.2)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |  |  |
| Me=-205.91 @8.05                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | -2.85                         | -208,8 **            | (5=2.5(4742) +345(5)+4(310)+3(208.8) +2.19                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |  |  |
| Lp=10.4'=Lb=11.5'=Lr=3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0.4'                          |                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |  |  |
| M-= 2.19/1230-23.3(11.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | -10.4)] = 7638 IK             | = 9Mo= 1730 1k =     | ≈ ¢Mn=1230 <sup>IK</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |  |  |
| to the site of                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                               |                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |  |  |
| 52.571312 - 0,04 - 0, L                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                               |                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |  |  |
| Interaction: 52.5/1312/1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 1+1942/1230=1                 | 0.41 <1.0 : · OK     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |  |  |
| 2)Latera                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Gravity                       | Total                | La L                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |  |  |
| Mulax = -344,218@19'                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | -42.8                         | -387 110<br>1789 110 | $\int \frac{12.5(387)}{(1.24)+3(1.724)+3(1.724)-3(1.724)-3(1.724)-3(1.724)-3(1.724)-3(1.724)-3(1.724)-3(1.724)-3(1.724)-3(1.724)-3(1.724)-3(1.724)-3(1.724)-3(1.724)-3(1.724)-3(1.724)-3(1.724)-3(1.724)-3(1.724)-3(1.724)-3(1.724)-3(1.724)-3(1.724)-3(1.724)-3(1.724)-3(1.724)-3(1.724)-3(1.724)-3(1.724)-3(1.724)-3(1.724)-3(1.724)-3(1.724)-3(1.724)-3(1.724)-3(1.724)-3(1.724)-3(1.724)-3(1.724)-3(1.724)-3(1.724)-3(1.724)-3(1.724)-3(1.724)-3(1.724)-3(1.724)-3(1.724)-3(1.724)-3(1.724)-3(1.724)-3(1.724)-3(1.724)-3(1.724)-3(1.724)-3(1.724)-3(1.724)-3(1.724)-3(1.724)-3(1.724)-3(1.724)-3(1.724)-3(1.724)-3(1.724)-3(1.724)-3(1.724)-3(1.724)-3(1.724)-3(1.724)-3(1.724)-3(1.724)-3(1.724)-3(1.724)-3(1.724)-3(1.724)-3(1.724)-3(1.724)-3(1.724)-3(1.724)-3(1.724)-3(1.724)-3(1.724)-3(1.724)-3(1.724)-3(1.724)-3(1.724)-3(1.724)-3(1.724)-3(1.724)-3(1.724)-3(1.724)-3(1.724)-3(1.724)-3(1.724)-3(1.724)-3(1.724)-3(1.724)-3(1.724)-3(1.724)-3(1.724)-3(1.724)-3(1.724)-3(1.724)-3(1.724)-3(1.724)-3(1.724)-3(1.724)-3(1.724)-3(1.724)-3(1.724)-3(1.724)-3(1.724)-3(1.724)-3(1.724)-3(1.724)-3(1.724)-3(1.724)-3(1.724)-3(1.724)-3(1.724)-3(1.724)-3(1.724)-3(1.724)-3(1.724)-3(1.724)-3(1.724)-3(1.724)-3(1.724)-3(1.724)-3(1.724)-3(1.724)-3(1.724)-3(1.724)-3(1.724)-3(1.724)-3(1.724)-3(1.724)-3(1.724)-3(1.724)-3(1.724)-3(1.724)-3(1.724)-3(1.724)-3(1.724)-3(1.724)-3(1.724)-3(1.724)-3(1.724)-3(1.724)-3(1.724)-3(1.724)-3(1.724)-3(1.724)-3(1.724)-3(1.724)-3(1.724)-3(1.724)-3(1.724)-3(1.724)-3(1.724)-3(1.724)-3(1.724)-3(1.724)-3(1.724)-3(1.724)-3(1.724)-3(1.724)-3(1.724)-3(1.724)-3(1.724)-3(1.724)-3(1.724)-3(1.724)-3(1.724)-3(1.724)-3(1.724)-3(1.724)-3(1.724)-3(1.724)-3(1.724)-3(1.724)-3(1.724)-3(1.724)-3(1.724)-3(1.724)-3(1.724)-3(1.724)-3(1.724)-3(1.724)-3(1.724)-3(1.724)-3(1.724)-3(1.724)-3(1.724)-3(1.724)-3(1.724)-3(1.724)-3(1.724)-3(1.724)-3(1.724)-3(1.724)-3(1.724)-3(1.724)-3(1.724)-3(1.724)-3(1.724)-3(1.724)-3(1.724)-3(1.724)-3(1.724)-3(1.724)-3(1.724)-3(1.724)-3(1.724)-3(1.724)-3(1.724)-3(1.724)-3(1.724)-3(1.724)-3(1.724)-3(1.724)-3(1.724)-3(1.724)-3(1.724)-3(1.72$ |  |  |
| MB=-0.5 " @ 9.5"                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 24.6                          | 21.1 <sup>1K</sup>   | Ch 20(101/1/10.1) 1/261/101.2/ 2.21                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |  |  |
| Me=-172.4"@14.25'                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 5.21                          | -167.2 <sup>/K</sup> |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |  |  |
| Lp=10.4' - Lb= 19' - Lr = 30.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | ť                             |                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |  |  |
| 94n = 2,31[1230-23,3(19-10.4)] = 7378 1K < 94n = 1230 1K =7 84n = 1230 1K > M. = 387 1K : . OK                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                               |                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |  |  |
| 2171                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                               | TAI                  | and the second standard second s                                                                                                                                                                                                                                                    |  |  |
| 5/ Laleral<br>Mmax = 290.91k@01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | -11.6                         | 279.310              | 12.5(271.3)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 3.05                          | 153.6 <sup>/k</sup>  | G=2.5(279.3)+3(53.6)+4(17.6)+3(13.3)=2.15                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |  |  |
| MA = 150.5@ 2.88                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 6.47                          | 171244               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |  |  |
| MA = 150.5@ 2.88'<br>MB = 10.6@ 5.75'<br>Mc = -129.9@ 8.63'                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | -1.42                         | -[2].2               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |  |  |
| $M_{A} = 150.5 \oplus 2.88'$ $M_{B} = 10.6 \oplus 5.75'$ $M_{c} = -129.9 \oplus 8.63'$ $1 = -5678'c1 = 110'c1 = 100'c1 = 100'$ | -1.42                         | -[31.)               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |  |  |
| MA = 150.5 @ 2.88'<br>MB = 10.6 @ 5.75'<br>Mc = -129.9 @ 8.63'<br>Lp = 6.78' <lb 11.5'<lr="&lt;/td" ==""><td>-1.42<br/>19.5 '</td><td>- [2], )</td><td></td></lb>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | -1.42<br>19.5 '               | - [2], )             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |  |  |

|          |                                                                                                                                                                  |                                                  |                                                                                                  |                                                                   | 2/2 |  |  |
|----------|------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------|--------------------------------------------------------------------------------------------------|-------------------------------------------------------------------|-----|--|--|
|          | 4) $\frac{Latera}{M_{May}} = -219.2^{1K} @ 19^{1}$<br>$M_{A} = 109^{1K} @ 4.75^{'}$<br>$M_{B} = -0.38^{1K} @ 9.5^{'}$<br>$M_{e} = -109.8^{1K} @ 1425^{'}$        | Gravity<br>-41.91K<br>6.42<br>21.1<br>5.45       | Total<br>-261,1%<br>115,41%<br>20,71%<br>-104,41%                                                | 12.5 (261.1)<br>Ch= 2.5 (261.1)+ 3415.4)+ 41/20.7)+3(104.4)= 2.34 |     |  |  |
|          | Lp=6.78'2Lb=19'2Lr=18                                                                                                                                            | 5'                                               |                                                                                                  |                                                                   |     |  |  |
|          | 4Mn=234[750-22.6(19-6.78)]= 11091K = 4Mp=7501K => 4Mn=7501K > Mn=261.1K: OK                                                                                      |                                                  |                                                                                                  |                                                                   |     |  |  |
| "DAMPAD" | 5) <u>Lateral</u><br>Mirrax = 1147 <sup>1K</sup> @115'<br>MA= 60.1 <sup>1K</sup> @2.88'<br>MB= 1.42 <sup>1K</sup> @5.75'<br>Mc= -56.5 <sup>1K</sup> @8.63'       | <u>6107/47</u><br>-18.4<br>2.57<br>7.32<br>-0.25 | Total<br>-133.11K<br>62.61K<br>9.2411<br>-56.81K                                                 | 12.5(133.1)<br>45=25(1331)+362.61+#9.24)+365.8) = 2.29            |     |  |  |
|          | Lp=4.31/cLb=11.5'CLr=12                                                                                                                                          | 3'                                               |                                                                                                  |                                                                   |     |  |  |
|          | 10Ma=2.29[249-12.3(11.5-                                                                                                                                         | 4.31)]=368 <sup>™</sup> ∈                        | \$10=2491K => 0                                                                                  | 01n=2491K=1u=13311K:0K                                            |     |  |  |
| 0        | 6) <u>Latera</u><br>Merox = -86/1K@ 191<br>Ma = 42.51K@ 4.751<br>Ma = -0.371K@ 9.51<br>Ma = -43.21K@ 14.251                                                      | <u>Gravity</u><br>-42.1<br>5.83<br>20.7<br>5.07  | Total<br>-128.2 <sup>1K</sup><br>48.3 <sup>1K</sup><br>20.3 <sup>1K</sup><br>-38.1 <sup>1K</sup> | 12.5(128.2)<br>C6=25(128.2)+3(483)+4(20.3)+3(38.1)=2,42           |     |  |  |
|          | $\begin{array}{c} L_{5} = \left[ 9^{1} > L_{7} = \left[ 2.3^{\prime} \\ 2.42 \pi^{2} (29,00) \\ F_{cr} = \left[ 9(12) / 1.51 \right]^{2} \\ \end{array} \right]$ | 0.078 <u>57.6(17.3)</u>                          | $\frac{\left[\frac{H(12)}{1.51}\right]^{2^{1}}}{1.51} = 41.9 k$                                  |                                                                   |     |  |  |
|          | @Mn=0.9(44.9)(57.6)/12=1.                                                                                                                                        | 81 <sup>uc</sup> = 917p = 249                    | 1K => 0Mn = 1811                                                                                 | >My=128,2 <sup>1K</sup> , :. OK                                   |     |  |  |
|          | 7) <u>Laternl</u><br>Pmax = 4,53 k<br>Mmox= -382 <sup>1 k</sup>                                                                                                  | Gravity<br>122.1ª<br>01K                         | <u>Total</u><br>126.6 K<br>-382 <sup>114</sup>                                                   |                                                                   |     |  |  |
|          | Lb=12.13' < Lp=14,5' => 01                                                                                                                                       | 1n= 1640 <sup>110</sup>                          |                                                                                                  |                                                                   |     |  |  |
|          | 126.6/2809=0.05 < 0.2                                                                                                                                            |                                                  |                                                                                                  |                                                                   |     |  |  |
|          | Interaction: 126,6/2809/2                                                                                                                                        | + 382/1640 = 0.26                                | <1,0 :. 0K                                                                                       |                                                                   |     |  |  |
|          | 8) <u>Lateral</u><br>Priny = 12.71 K<br>Minax = -85 <sup>1</sup> K                                                                                               | Gravity<br>41.2K<br>Othe                         | Total<br>41.9K<br>-8518                                                                          |                                                                   |     |  |  |
|          | Lb=13.04'+Lp=141' =>                                                                                                                                             | 6Mn= 97511C                                      |                                                                                                  |                                                                   |     |  |  |
|          |                                                                                                                                                                  |                                                  |                                                                                                  |                                                                   |     |  |  |

### Appendix J



|            |                                                                                                              | 2/4 |
|------------|--------------------------------------------------------------------------------------------------------------|-----|
|            | - Flange Plate Black Shear (Leh=1.25", Lev=1.5")                                                             |     |
| 0          | (use 1: Table 9-30: 32.6 K/m)<br>9-36: 170 K/m > 34(32.6+170)(2)= 203.9 K= [= 180.2 K : 0K<br>9-36: 183 K/m) |     |
|            | (use 2: Table 9-30: 979(2)+32.6=228.4 K/m 2 3/4(228.4+170)=298.8 K = Fm=180.2 K : OK<br>9-36: 170 4/m        |     |
|            | - Flange Plate Flexural Backling                                                                             |     |
| ΓQ.        | K. R/r = 0.65(2")/E0.289(34)=6.0 < 25 =7 For= Fy                                                             |     |
| MIN        | $\mathscr{R}_{n} = 0.9(36)(8)(34) = 194.4^{k} - T_{4} = 180.2^{k} : OK$                                      |     |
| R          | -Flange Plate Local Buckling                                                                                 |     |
|            | Stiffened: 5.5/(3/4) < 253/136 => 7.33 < 42.2 : 0K                                                           |     |
|            | Unstiffened: 1.25/(3/4) < 18/3 => 1.67 < 15.8 : OK                                                           |     |
|            | -Bolt Shear/Bearing/Tear-out                                                                                 |     |
| $\bigcirc$ | F. = 373,2(12)/2+1/= 185,8×                                                                                  |     |
|            | Bult Shear: #r=24.3K                                                                                         |     |
|            | Bearing: Plate: Pr. = 0.75/2.4)(7/8)(58)(3/4)=68.5 K                                                         |     |
|            | Bm Flange: Mr. = 0.75 (2.4) (8) (65) (0.77) - 78.8 K                                                         |     |
|            | Tear-out/Edge Balts: Plate: Le=1.5-(78+46)/2-1.031 => Prn=0.75(1.2)(1.031)(58)(4)=40.4K                      |     |
|            | Bri Flange: L= 1.25 - (78+46)/2=0.781 => prn=0.75(1.2)(0.781)(65)(0.17)=35.2K                                |     |
|            | Tear-out/others Plate Lc= 3-(7/8+1/6)=2.06 => Wn=0.75(1.2)(2.06)(58)(34)=80.6 K                              |     |
|            | Bm Hange: Le 2.06 => 9rn=0.75(1.2)(2.06)(5)(0.77) = 92.8K                                                    |     |
|            | $=> \&R_n = S(24.3) = 194.4 \ ^{\kappa} > F_4 = 185.8 \ ^{\kappa} : OK$                                      |     |
|            |                                                                                                              |     |
|            |                                                                                                              |     |
|            |                                                                                                              |     |
|            |                                                                                                              |     |
|            |                                                                                                              |     |

| 4    |                                                                                                          | 3/4 |  |
|------|----------------------------------------------------------------------------------------------------------|-----|--|
|      | -Beam Flexural Strength                                                                                  |     |  |
|      | $A_{fg} = 9.02(0,77) = 6.95 in^2$                                                                        |     |  |
|      | $\Lambda_{fn} = 6.95 - 2(N_8 + V_8)(0.77) = 5.41 \text{ m}^2$                                            |     |  |
|      | Fy/Fu=59/65=0.769<0.8=> YE=1.0                                                                           |     |  |
|      | 65(5.41) > 1.050/6.95)=7 351.7 > 347.5 : No reduction for tensile rupture                                |     |  |
|      | -Beam Flange Block Shear (Lev= 1.5 - 44" tolerance = 1.25")                                              |     |  |
| "OVA | $A_{n,k} = [9,02-5,5-(78+1/8)][0,77) = 1.94 in^2 = 76 km = 0.75(65)(1.94) = 94.6 km$                     |     |  |
| Am   | Tuble 9-36 231 4/m<br>9-32 197 4/m                                                                       |     |  |
|      | Rn = 94.6 + 0.77 (197)(2) = 398,0 K > Fu = 185.8 K : 0K                                                  |     |  |
|      | -Single-Plate Web Connection (Leh-Lev=1.5")                                                              |     |  |
|      | $#B_0 t_5:V_n=51.1K=7$ m $78'' = 10.1t_2=51.1/24.3=2.1=7n=37$                                            |     |  |
| 0    | Try (tp=3/8"/(Leh=1.5", Lev=1.5")                                                                        |     |  |
|      | -Plate Shear Yield                                                                                       |     |  |
|      | \$R_m=1,1/0.6)(36)(9)(\$18)=72.9 K>1/4=51,1K: OK                                                         |     |  |
|      | -Plate Shear Rupture:                                                                                    |     |  |
|      | 0Kn= 0.75(0.6)58) [9-3(78+1/8)](38)=58.7K >1/4=51.1K 0K                                                  |     |  |
|      | -Plute Block Shear:                                                                                      |     |  |
|      | Table 9-34: 435 Win<br>9-36: 121 Vin<br>9-36: 131 Vin<br>$(435 + 121) = 61.7 \times 14 = 51.1 \times 0K$ |     |  |
|      | -Bult shear/Bearing/Tear-out                                                                             |     |  |
|      | Bolt Shear: Wn=24.3K                                                                                     |     |  |
|      | Bearing: Plate: 4v., =0.75(2.4)(78)(50)(3/8)=34.3K                                                       |     |  |
| Ο.   | Br. Web: 4r, =0.75(2.4)(76)(65)(0.47) = 48.1 K                                                           |     |  |
|      | Teur out/Edge Bolts: Plate: L=1.5+(1/2+1/6)/2=1,03 => 9ra=0.75(1.2)(1.03)(53)(38)=20.2 K                 |     |  |
|      |                                                                                                          |     |  |

|      |                                                                                                                                                             | 4/4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|------|-------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|      | Tear-out/Athons: Plate: 1 = 3-(1/8+4/6)=2.06 => pr. = 0.75(1.2)2.06(58)(48)=40.3K                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|      | Br. Web: $L_r = 2.06 \implies Mr_n = 0.75 (1.2) 2.06 (65) (0.47) = 56.6 K$                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|      | => \$PRn=20.2+2(24.3)=68.8 K > Vu=51.1K:0K                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|      | -WebPlate to Column Flange Weld                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|      | $t_{W,min} = 3/6'' = 7 T_{W} t_{W} = 3/6''$                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|      | #Rn=1.392(3(9)2)=75.2 K > Vu=51.1 K :: OK                                                                                                                   | de l'anna de la companya de la compa |
| "OVG | -Flange Plate to Column Flange Weld                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| AM   | $f_{4} = 373.2(12)/(24/1 + 3/4) = 180.2^{K}$                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|      | Denin = 2(1.52)(1.392)(8) = 5.4=7 Use [tu= 6/16= 3/8"]                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|      | twymm= 1/4" < 3/8" OK                                                                                                                                       | has the second s |
|      | -Check Colymm                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|      | -Local Flange Bending                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|      |                                                                                                                                                             | a ser a ser a ser a segur a deserva a ser a s                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|      | -Local Web Tielding                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|      | $\#_{W} = 1.0(50)(5(2.32) + 3/4)(1.07) = 660.7^{K} = T_{W} = C_{W} = 180.2^{10}$ . · OK                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|      | -Local Web Crippling                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|      | $\mathscr{R}_{n} = 0.75(0.0)^{2} \left[ 1 + 3\left(\frac{0.75}{16.0}\right)^{1.5} \right] \sqrt{\frac{29000}{1.07}} = 1.121.1^{K} > C_{n} = 182.2^{K} : 0K$ |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|      | -Panel Zone Shear                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|      | $V_{4} = 180.2 + 318.8(12)/(24.1+3/4) - 32.2 = 301.9^{K}$                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|      | $l_{4}^{2} = (1595 + 192.6)/2 = 176.1^{k} < 0.4(50)(68.5) = 1,370^{k}$                                                                                      | and and the point of the second s                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|      | ØRy = 0,9(0,6)50×16,0×107)=462.2 k > V4 = 301.9 k ∴ OK                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|      |                                                                                                                                                             | an a                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|      |                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|      |                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|      |                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |




|              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 3/4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|--------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|              | -Beam Flexural Strength                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 0            | $A_{fg} = 12.8(0.85) = 10.88 \text{ in}^2$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|              | $A_{5n} = 10.88 - 2(7/8 + 1/8)(0.85) = 9.18 in^2$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|              | Fy/Fy=59/65=0.769 < 0.8=7 Yz=1.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|              | 65(9.18) =1.0(50)(10.88) =7 596.7 = 544 : No reduction for tensile rupture                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|              | -Beam Flange Block Shear (Lev=1.5-1/4" tulevance=1.25")                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| "DVD"        | Ant=[12.8-5.5-(7/8+1/8)]0.85=5.36 in2 => 4R+t=0.75(65)(5.36)=261.3K                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Am           | Table 9-36:298 K/in<br>9-36:256 K/in                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|              | $qR_n = 261.3 + 0.85(256)(2) = 696.5^{K} + 7F_0 = 213.6^{K} = 0K$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|              | - Single-Plate Web Connection (Len=Lev=1.5")                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | and the second s |
|              | *Bolts: V= 68.3K => n 75" / Bbolts = 68.3/24:3=2.8=7=37                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|              | Try tp=7/16" (Leh=1.5", Lev=1.5")                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 12           | -Plate Shear Yield                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | And a second sec |
|              | PRn=1.0(0,6)66)(4)(7/16)=85.1 K > Vu=623 K ∴ OK                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|              | -Plute Shear Rupture:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|              | \$\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|              | -Plate Block Shear:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| •<br>• • • * | Table $9-3a: 43.5 \times 1.6$<br>$9-3b: 121 \times 1.6$<br>$9-3c: 131 \times 1.6$<br>$9-3c: 132 \times 1.6$<br>9-3c |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|              | - Bolt Shear/Bearing/Tear out                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|              | Bult Shear: drn=24.3k                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|              | Bearing: Plate arn= 0.75(2.4)(7/8)(58)(7/6)=40.0K                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|              | Bry Web: 0.75(2.4)(76)(65)(0.55)= 56,310                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|              | Tear out/Edge Bolk: Plate: L=1.5-(7/8+1/6)/2=1.03 => \$1,5=0.75(1.2)(1.03)(58)(7/6)=23.5 K                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |





| -    |                                                                         | 2/4 |  |
|------|-------------------------------------------------------------------------|-----|--|
|      | -Flange Plate Flexural Buckling                                         |     |  |
|      | kl/r=0.65(2")/[0.289(12)]=9+25=7 Fa=Fy                                  |     |  |
|      | ØRn=Q9(36)(6)(1/2)=97.2 K >Fu=79.3 K:iOK                                |     |  |
|      | -Flange Plate Local Buckling                                            |     |  |
|      | Stiffened: 3.5/(1/2)+253/136=7<42,2:0K                                  |     |  |
|      | Unstiffened: 1.25/(V2) < 95/136 = 2.5 < 15.8 : OK                       |     |  |
| "OVA | -Bolt Shear/Bearing/Tear-oat                                            |     |  |
| AM   | Fu=120,2(12)/17,7=81.5 K                                                |     |  |
|      | Bott Shear 1976 = 24:3×                                                 |     |  |
|      | Bearing: Plate: 197n = 0.75(2.4)(78)(53)(1/2)= 45.7 K                   |     |  |
|      | Bm. Flange: or,=0.75(2.4)(78)(65)(0.425)=43.5 K                         |     |  |
|      | Tear-out/EdgeBolts: Plate Le=1.031 => prn=0.75(1.2)(1.031)(58)(2)=26.9k |     |  |
| U    | Brn. Flange: L=0.781 => @rn=0.75(1.2)(0.781)(65)(0.45) = 19,4K          |     |  |
|      | Tear-out/others: Plate: Le=2.06 => @rn=0.75(1.2)(2.06)(58)(5)=53.8K     |     |  |
|      | Bm. Flange: 1c=2.06 => 01n=0.75(1.2)(2.06)(65)(0.425) = 51.2 K          |     |  |
|      | => \$Rn = 2(19.4) + 2(24.3) = 87.4 K > Fu = 81.5 K OK                   |     |  |
|      | -Beam Flexaral Strength                                                 |     |  |
|      | $A_{5g} = 6(0.425) = 2.55 in^2$                                         |     |  |
|      | $A_{5n} = 2.55 + 2(78 + 1/8)(0.425) = 1.7 in^2$                         |     |  |
|      | Fy/Fn=50/65=0.769×0.8=>Yt=l0                                            |     |  |
|      | 65 (1.7) < L0(50)(2.55) = 110.5 < 127.5                                 |     |  |
|      | 4Mn = 0.9(65)(1.7)(57.6)/2.55/12= 187.2 St-k > My= 120.21K :: 0K        |     |  |
|      |                                                                         |     |  |
|      |                                                                         |     |  |
|      |                                                                         |     |  |

| MARAD"   | Beam Flange Block Shear (Lev=1.5-14" tolevance = 1.25")<br>Ant = [6.0-3.5-(78+1/8)](0.425) = 0.638 in <sup>2</sup><br>Table 9-35: 95.6 Hin<br>9-3c: 80.4 Hin<br>9-3c: 80.4 Hin<br>9-8n= 0.75(65)(0.638) + 0.425(80.4)(2) = 99.4 K > Fu=81.5 K: 0K<br>Single-Plate Web Connection<br>=*Bults: Vu=17.9 K=>n [78" Bults] = (7.9"/12.4 = 1.4 = 7n=2]<br>Try to=716"[(Leh=1.5", Lev=1.5"])<br>-Plate Shear Yield<br>9Rn=1.0(0.5)(36)(5)(716)=24.3 K > Vu=17.9 K: 0K                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |  |
|----------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| Amero"   | Ant = $[6.0^{-3.5} + (78 + 78)](0.425) = 0.638 in^{2}$<br>Table 9-3h: 95.6 K/in<br>9-3c: 80.4 K/in<br>$R_{n} = 0.75(65)(0.638) + 0.425(80.4)(2) = 99.4 K > F_{m} = 81.5 K :.0K$<br>Single-Plate Web Connection<br>=*Bolts: V_u = $17.9 K = 7m \left( \frac{778'' 8holts}{100} \right) = (17.9 K/12.4 = 1.4 = 7m = 2)$<br>Try to = $\frac{716'''}{100} (Le_{h} = 1.5'', Le_{V} = 1.5'')$<br>-Plate Shear Yield<br>$gR_{n} = 1.0(0.5)(36)(5)(3(6) = 24.3 K > V_{m} = 17.9 K :.0K$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |
| "arant   | Table 9-36: 95.6 K/in<br>9-3c: 80.4 K/in<br>$\theta R_{\eta} = 0.75(65)(0.638) + 0.425(80.4)(2) = 99.4 K > F_{\eta} = 81.5 K :. 0K$<br>Single-Plate Web Connection<br>$=^{*}Bults: V_{u} = 17.9 K = 7m \left( \frac{78'' ghults}{1000} \right) = (17.9 K/12.4 = 1.4 = 7m = 2.1)$<br>$Try \left[ t_{0} = \frac{7}{716} \frac{M}{K} (Le_{h} = 1.5'', Le_{V} = 1.5'') \right]$<br>-Plate Shear Yield<br>$\eta R_{n} = 1.0(0.5)(36)(5)(\frac{3}{16}) = 24.3 K > V_{u} = 17.9 K :. 0K$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |  |
| "AMPAD"  | $\begin{split} & \# R_n = 0.75(65)(0.638) + 0.425(80.4)(2) = 99.4^{K} > F_n = 81.5^{K} : .0K \\ & Single = Plate Web Connection \\ & = \# Bults: V_n = 17.9^{K} = > n \left( \frac{78''' \# bolts}{1} \right) = 17.9^{K} / 12.4 = 1.4 = \frac{7}{n = 2} \right) \\ & Try \left[ \frac{1}{p} = \frac{716'''}{16} \left( \frac{1}{2e_n} = 1.5''', \frac{1}{2e_n} = 1.5''' \right) \\ & = Plate Shear Yield \\ & \# R_n = 1.0(0.5)(36)(6)(\frac{3}{16}) = 24.3^{K} > V_n = 17.9^{K} : .0K \end{split}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |  |
| ZAMPAD"  | Single-Plate Web Connection<br>=*Bults: $V_u = 17.9 \times -7n \left( \frac{78'' \# bults}{1000} \right) = 17.9 \times 12.4 = 1.4 = \frac{7n}{21}$<br>Try $t_p = \frac{716''}{16} \left( \frac{1}{26n} = 1.5'', Lev = 1.5'' \right)$<br>= Plate Shear Yield<br>$\# Rn = 1.0(05)(36)(6)(\frac{3}{16}) = 24.3 \times -V_u = 17.9 \times -0.0 K$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |  |
| "DAMPAD" | $= {}^{\#}Bults: V_{u} = 17.9^{k} = 7n \left( \frac{78''' \# butts}{2} = 17.9^{k'}/12.4 = 1.4 = 7n = 2 \right)$ $Try t_{\varphi} = \frac{716'''}{(Leh = 1.5'', Lev = 1.5'')}$ $= {}^{Plate Shear Yield}$ $\# Rn = 1.0(0.5)(36)(6)(\frac{316}{2}) = 24.3^{k} > V_{u} = 17.9^{k'} : 0 K$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |  |
| AMPA     | $Try to = 7.6 " (Leh = 1.5", Lev = 1.5")$ -Plate Shear Yield $qRn = 1.0(0.5/36)(6)(316) = 24.3 K > V_{u} = 17.9 K :: 0 K$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |  |
| X        | -Plate shear Yield<br>$PRn = 1.0(0.5)(36)(6)(316) = 24.3^{K} > V_{u} = 17.9^{K} : : 0K$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |  |
|          | PRn=1.0(0.6)(36)(6)(316)=24.3 K > V_u=17.9 K : : 0K                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |  |
|          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |
|          | -Plate Shear Rupture                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |  |
|          | \$K_0=0,75(0,6)\$876-2.38731(0)6=22.0"> /u=1.4"0K                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |  |
|          | - Mate Diock Shear                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |  |
|          | $ \varphi K_{\eta} = 0.75 [58(1,5-(7/8+7/3)/2), 7/6) + 0.6(36)(9.5)(7/6) ] = 22.8^{K} > V_{\eta} = [7.9^{K} \cdot \cdot \cdot 0]( 2.3^{K} \cdot \cdot 0) ] = 2.4^{K} \cdot \cdot 0 ] = 1.5^{K} \cdot 0 $ |  |
| -        | $\min_{n}   \mathfrak{P}[n=0.75[58(1.5-(43+3)/2)(416)+0.6(58)(45-1.5(38+3))(316)] = 25,74$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |  |
|          | -Bolt shear (Bearing) Tear ont                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |  |
|          | Bolt Shey: Ørn=12.4 R                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |  |
|          | Bearing: Plate: 9rn=0.75(2.4)(88)(34)=12.2 K                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |  |
|          | Brn. Web: 07, n= 0,75 (2, 4) (50) (53) (0,3) = 21.9K                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |  |
|          | $T_{car-oat}/Edge Bolts: Plate: Le=1.5-(%+46)/2=1.16'' => or_n = 0.75(1.2)(116)(5.8)(%16)=11.4K$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |  |
|          | Tear out others: Plate: Le=3-(5/8+416)=2.31"=765, -0.75(1.2)(2.31)(58)(3/6)-22.6K                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |  |
|          | Bm. Web: Lc=2.31" => arn=0.75(1.2)(2.31.(65)(0.3)=40.5 K                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |  |
|          | => \$\$ n= 11.4+12.2= 23.6 K>1/4=17.9 K: OK                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |  |
| 2        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |
|          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |

| +          |                                                                                                                                                  | 4/4                         |
|------------|--------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------|
|            | -Web Plate to Column Hange Weld                                                                                                                  |                             |
|            | twm/n=18"=7Try/tw=18"                                                                                                                            |                             |
|            | ØR==1.392(2)(6)(2)=33.4 × >V4=17.9 × ∴ OK                                                                                                        |                             |
|            | -Flange Plute to Column Flange Web                                                                                                               |                             |
|            | Fu = 74.3 K                                                                                                                                      |                             |
|            | $D_{min} = \frac{74.3}{2(1.5)(1.392)(6)} = 3.16 = 7V_{3e} \left[ t_w = \frac{4}{16} = \frac{1}{4} \frac{4}{16} \right]$                          |                             |
| "DVD"      | twmin=3/16" ~ 14" :. 0K                                                                                                                          |                             |
| WK         | -Check Column                                                                                                                                    |                             |
|            | -Local Flange Bending                                                                                                                            |                             |
|            |                                                                                                                                                  | TITI                        |
|            | -Local Web Yielding                                                                                                                              |                             |
|            | @Rn= 1,0(50)[5(1,69)+1/2](0,68)= 304,3 K > Tu=Cy=79.3 K 1, 0K                                                                                    |                             |
| $\bigcirc$ | -Local Web Crippling                                                                                                                             |                             |
|            | $e^{R_{1}-0.75}(0.9(0.68)^{2}\left[1+3\left(\frac{0.5}{1.09}\right)^{1.5}\right]\left[\frac{29000(50)(1.09)}{0.68}=444.1^{K}>C_{4}=79.3^{K}:.0K$ |                             |
|            | -Panel Zone Shear                                                                                                                                |                             |
|            | $V_{4} = 79.3 + 108.9(12)/(17.7 + V_{2}) - 14.6 = 136.5^{K}$                                                                                     |                             |
|            | $P_{4} = (83.4 + 133.9)/2 = 108.7 \text{ k} = 0.4(50)(42.7) = 854 \text{ k}$                                                                     |                             |
|            | 4Ry=0.9(0.6)(0.1)(4.8)(0.68)=271.7K>V4=136.5K:0K                                                                                                 |                             |
|            |                                                                                                                                                  |                             |
|            |                                                                                                                                                  |                             |
|            |                                                                                                                                                  |                             |
|            |                                                                                                                                                  |                             |
|            |                                                                                                                                                  |                             |
|            |                                                                                                                                                  |                             |
|            | and and a stand of the standard                                  | n ing dan kan dipang kan ng |



|      |                                                                               | 2/4- |
|------|-------------------------------------------------------------------------------|------|
|      | - Flange Mate Local Buckling                                                  |      |
|      | Stiffened: 5.5/(1/8) - 253/138 = 6,29-422:101                                 |      |
|      | Unstiffened: 1.25/(1/8) = 95//26 = 1.43 < 15.8 : . 0K                         |      |
|      | -Bott Shear/Bearing/Tear-oat                                                  |      |
|      | T= 415.7(12)/241 = 207k                                                       |      |
|      | Bat Serie My= 243K                                                            |      |
| "OVA | Backing Plate orn 0.75 (2.4) (78/58) (76) = 79.9K                             |      |
| AM   | Bm Flange: 0.75(2.4)(7/2)(5)X0.77)=78.84                                      |      |
|      | Tegrout/Edge Bolts: Plate Le=1.031 & 97,=0.75(1.2)(1031)(58)(72)=47,114       |      |
|      | Bm. Flange: L= 0.781 =7 4Vn= 0.75(1.2)(0.781)(65)(0.77) = 35.2 K              |      |
|      | Teur-out/Others: 1/4te. Le 2.06 =7 91, 0.75 (1.2) 2.06/(58) 1/8) = 94.1K      |      |
|      | Bm. Flange: L = 2.06 => 11/1 = 0.75 (1.2)(2.06)(65) (0.77) = 92.8K            |      |
| 0    | => \$R_n=10(2+3)=243* > F_u=207*OK                                            |      |
|      | -Beam Flexing Strongth                                                        |      |
|      | Afg= 9.02 (0.77) = 6.95 in 2                                                  |      |
|      | Asn=6.95+2 (1/8+1/2)0.77=5.44 in <sup>2</sup>                                 |      |
|      | Fy/F= 5965=0,769=0.8=> YE=10                                                  |      |
|      | 55 (5.41) > 1.0(50)(6.95) = 351.7 > 347.5 No reduction for tensile vuoture    |      |
|      | -Beam Flonge Block Shear (Lev=15-14" tolerance=1,25")                         |      |
|      | $A_{nE} = 194 i n^2$                                                          |      |
|      | Table 19-36: 298 14/19<br>19-36: 256 14/19                                    |      |
|      | $\#h_{1} = 0.75(65)(1.94) + 0.77(256)(2) = 488.8^{K} > F_{W} = 207^{K} :: 0K$ |      |
|      |                                                                               |      |
|      |                                                                               |      |
|      |                                                                               |      |

|            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 3/4                                                                                                             |
|------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------|
|            | -Single-Plate Web Connection                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                 |
|            | $= B_0 H_5 : V_m = 52,  K = 7 n (75 (abov  h)) = 52, 1/24; 3 = 2.14 = 7 n = 3$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                 |
|            | Try tp= 3/8 (lex=15", lex=15")                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                 |
|            | -Plate Shear Yield                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                 |
|            | \$ Rm = (D(06)(36)(9)(32) = 72.9 k > Vu= 52,1 k OK                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                 |
|            | -Nate Shear Rupture                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | de met de la companya |
| "CIVAI)    | 4Rn = 0.75(0,6)(58)[9-3(76+V8)](3/8) = 58.7K > Vy=52.1K : 0K                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                 |
| AN         | -Plate Block Shear                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                 |
|            | Table 9-3e: 435 $\frac{1}{2}$<br>9-3b: [2] $\frac{1}{2}$ , $\frac{1}{2$ |                                                                                                                 |
|            | -Bolt Shear/Bearing/Tear-out                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                 |
|            | Butt Shear: 47n=24.3K                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                 |
| $\bigcirc$ | Bearing: Plate: \$7, = 0.75 (0.4) (78) (58) (78) = 34.3 K                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                 |
|            | Bm. Web: 470-0.75 (2.4) (7/8) (65 (0.47) = 48.1 K                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | tran ta afan ganaaf<br>An ganta a sa                                                                            |
|            | Tearout/Edge Bolts: Plate: Le=1.03 == 1071= 0.75(1.2)(1.03)(58)(38)=20.2 K                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                 |
|            | Tear-out/othas: Plate: Le=2.06 => orn= 0.75 (1.2)(2.06)(58)(38)=40.3 K                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                 |
|            | Bm. Webi Lc= 2.06 => Ørn= 0.75(1.2)(206)(65)(0.47) = 56.6K                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                 |
|            | => 0Ry = 20.2 + 2(24.3) = 68.8 K > Vy = 52.1 K .: 0K                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                 |
|            | -Web Plate to Column Flange Weld                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                 |
|            | $t_{W,M,7} = 3/16'' = 7T_{F_1} \left( t_W = 3/16^M \right)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                 |
|            | ØRn=1,392(3)(9)2)=75.2 K>Vy=52.1 K∴, OK                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                 |
|            | -Flange Plate to Column Flange Weld                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                 |
|            | $F_{4} = 199.7^{k}$ $D_{min} = 2(15)(1392)(8) = 5.98 = 705c \left(t_{w} = 50/6 = 35^{\prime\prime}\right)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                 |
|            | tw min = 5/16 - 3/8" 0K                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                 |



|        | Panel Zone Shear Checks -N-S(Y-dir)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1                                                                                                                                                                                                                                                    |
|--------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|        | -Check stiffening requirements for panel zone shear in N-S (Y-dir) frames                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                      |
|        | -Connection @ column K-4, 2 <sup>nd</sup> floor<br>$1 \frac{1}{164} = 134.6 \frac{1}{16} \frac{1}{$ |                                                                                                                                                                                                                                                      |
|        | Mu=H16.6 Mu=432.5 1/2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                      |
|        | $W/1 \times 233$ $R_{2} = 170.7^{\kappa}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                      |
| , CIVA | Vu=(416.6+ 432.5)/(2)/24.3" - 42.6 = 378.7 K                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                      |
| And    | $\beta_{4} = (134.6 + 170.7)/2 = 152.7^{k} < 0.4(50)(68.5) = 1370^{k}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 11                                                                                                                                                                                                                                                   |
|        | #Rv= 0.9(0.6)(50)(1.07)=462.2 K > Vu= 378.7 K :, OK                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                      |
|        | -Connection @ column K-8,4 <sup>th</sup> flaor<br>In 72.3 <sup>k</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                      |
|        | Vy=14.4K                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                      |
|        | $M_{u} = 133.11^{K}$<br>$M_{u} = 125.91^{K}$<br>$W 18 \times 35$<br>$W 14 \times 145$<br>T                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                      |
|        | IPnz=122.7K                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                      |
|        | 1/4 = (133.1 + 125.9)(12)/17.7 "- 14.4 = 161.2 K                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | lan di sana<br>di sana<br>di sana di sana<br>di sana di sana |
|        | $\beta_{u} = (72.3 + 122.7)/2 = 97.5^{v} < 0.450(42.7) = 854^{v}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                      |
|        | $\Re_{W} = 0.9 (0.6) (50) (14.8) (0.68) = 271.7^{k} > V_{W} = 161.2^{k} : 0K$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                      |
|        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | یا<br>20 جز - ۱۰<br>20 جز - ۱۰                                                                                                                                                                                                                       |
|        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | T                                                                                                                                                                                                                                                    |
|        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | and the second                                                                                                                                                                                                                                       |
|        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                      |
|        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                      |

## Appendix K

CAC Wind Pressure 1/1 -Vsing ASCE 7-10, Ch. 30, Part 3: Bldgs w/ h >60' Exception 60'-67'-90' #67'/133'-1=> Use GCp values from Figs. 30.4-1 thru 30.4-6 9z=33.38 pst (from previous wind calcs) Aeff=(13+4/2)2/3=59.3 st GCp=+0.851-1.1 p= 33.38(1.1) - 33.38(0.18) = -42.7 pst at corner zone 5, =7 design glazing for this max load. "DAMPAD"

## Appendix L

| 12                                                                                                    | Office Bldg Enclose                                                                                                                                              | ire-Thermul 1/2                                                                                     |
|-------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------|
| -Kingspan 400 V-Wave I                                                                                | Insulated Metal Panels CIMPs)                                                                                                                                    |                                                                                                     |
| Melal Studs : R= 0.011/                                                                               | 3.5= 0.003/in => 6" MH Studs: R = 0.01                                                                                                                           | 03(6"×1.625")/2033" = 0.89 hr. A2. oF/Bty                                                           |
| Int Film<br>578" Gyp Wallboard<br>6" Mtl. Stads<br>6" Batt Ins<br>12" Sheathing<br>2" IMP<br>Ext Film | R(cavity) R(studs)<br>0.68 0.68<br>0.56 0.56<br>- 0.89 Z Rays = 19(0.8<br>19 - 2<br>0.62 0.62<br>18 18<br>0.17 0.17<br><u>R=26.3</u> hr ft <sup>2</sup> . 9F/Btu | 9/[0.9(0.89)+0.1(19]] = 6.26<br> 4517: U-value(COG)=0.23=>U-value(system)=0.33<br>=7R = V0.33 = 3.0 |
| -Kawneer 1600 Wall Syste                                                                              | em 1-Spandret                                                                                                                                                    | 1600(Vision): U(06)=0.23=>U(system)=0.40                                                            |
| Int Film<br>98 Gra Wallboard<br>6"Mfl Studs                                                           | R(Safing) R(mullion)<br>0.68 0.68<br>0.56 0.56<br>0.89 2.6.26                                                                                                    | =7R= V0.4=2.5<br>[600(Spandrel):V(C06)=0.23=7VSystem)=0.29                                          |
| 1" Air Space<br>2" Thomafiber<br>2" Air Space<br>2" Air Space<br>Spandrel Gluss System<br>Ext Film    | 1.0<br>8.4<br>- 1.0<br>3.4<br>0.17<br><u>R=17.9</u> hr ff <sup>2.0</sup> f/bty                                                                                   | 4(1.0)/[0.9(1.0)+0.1(8.4)]=4.83                                                                     |
| -Kawneer 1600 Wall Syste                                                                              | m 1-Vision                                                                                                                                                       |                                                                                                     |
| Int Film<br>Vision Glass System<br>Ext Film                                                           | R<br>0.68<br>2.5<br>0.17<br>335 hr : ft <sup>2</sup> .°F/Bty                                                                                                     |                                                                                                     |
| -Kawheer 4517                                                                                         |                                                                                                                                                                  | an a                                                            |
| R<br>1st Film 0.68<br>1517 System 30<br>Ext Film <u>0.17</u><br><u>3.85</u> hi                        | r:ff <sup>2</sup> ,°F/Btu                                                                                                                                        |                                                                                                     |
|                                                                                                       |                                                                                                                                                                  |                                                                                                     |

|        |                                                                                        | 2/2                                                                                                                                                                                                                                |
|--------|----------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|        | -Enclosure Areas Existing                                                              |                                                                                                                                                                                                                                    |
|        | IMP: A=[4+ \$12+4(7+4/2)+3][18+8/2+51+3/2+133+7/2+57+2/2+65](2)<br>= 236495f           |                                                                                                                                                                                                                                    |
|        | 451 T: A = 5(6')[18+\$h2+2(51+2/2)+133+7/2+65](2)<br>= 19,175 sf                       |                                                                                                                                                                                                                                    |
|        | 1600 Spandrel: A = [4+ %/2+4(7+4/2)](50+14/2)(2)<br>= 3.457sf                          |                                                                                                                                                                                                                                    |
| "OPAD" | 1600 Vision : A=[46]+9'](50+19/2)(2)<br>= 3355 sF                                      |                                                                                                                                                                                                                                    |
| AM     | -Enclosure Areas-proposed                                                              | te de la companya de<br>La companya de la comp |
|        | 1600 Vision: A=(10+t/12)(5)(18+8/12+2(51+2/12)+133+7/12+65+50+10/12](2)<br>= 38,276 sf |                                                                                                                                                                                                                                    |
|        | 1600 Spandrel: A=[3(4)+3+4/2][18+9/2+2(5]+2/2)+133+7/2+65+50+(9/12](2)<br>=11,359 sf   |                                                                                                                                                                                                                                    |
|        | -Conductive Heating/Cooling Load - Existing                                            |                                                                                                                                                                                                                                    |
| 0      | q = 23,649/26,3+19,175/3.85 + 3,457/179 + 3,355/3.35<br>= 7,074 Btu/hr/°F              |                                                                                                                                                                                                                                    |
|        | -Conductive Heating/Cooling Load - Proposed                                            | and her second a second                                                                                                                                                                                                            |
|        | q = 38,276/3.35 + 11,359/17.9<br>= 12,060 Btu/hr/°F                                    |                                                                                                                                                                                                                                    |
|        | =>Prop/Exist=12,060/7,074=1.70 => 70% increase                                         | an far an                                                                                                                                                                                      |
|        | - Solar Load (Vision Glass)                                                            | n hanna a sea a sea an ann an ann an ann ann ann ann ann                                                                                                                                                                           |
|        | g=ABC/SCL)=7 load propurtional to visionglass area                                     |                                                                                                                                                                                                                                    |
|        | - Exist A= 19,175 + 3,355= 22,530 sf                                                   |                                                                                                                                                                                                                                    |
|        | -Prop. A=38,276 st                                                                     |                                                                                                                                                                                                                                    |
|        | ⇒8rop/Exist=38,276/22,530=1.70=7 <u>70% increase</u>                                   |                                                                                                                                                                                                                                    |
|        |                                                                                        |                                                                                                                                                                                                                                    |
|        |                                                                                        | and have and the face of a                                                                                                                                                                                                         |

## Appendix M

|                | Office Blog Enclosure - Vapi                                                                                                                                                                                                                                                                | r   //                                                                                                                                                                                                                  |
|----------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                | -Water Vapor Transfer (WVT) at IMPs Wall Section (neglect a                                                                                                                                                                                                                                 | y resistances of int. (ext. films)                                                                                                                                                                                      |
|                | IMP: Valspär polyester film: 0.00(0.73)/0.0015"=0.49 perms<br>Steel: 1.0 perms (due to seams)<br>Polyisocyanningte: 3(19/2"=1.5 perms<br>Steel: 1.0 perms (due to seams)<br>Valspar polyester film: 0.73 perms<br>Tyrek Commercia (Wrap: 28 perms<br>M"sheathing: 1/(2:)=2.0 perms          | (Kingspon IMP Spec # 2009 AstIRAE, Ch. 26, Table 7)<br>(SPFA Moisture Vapor Transmission, Table 1)<br>(Bldg Science Corp. Guide to Insulating Sheathing)<br>(Tyvek Commercial Wrap Performance Specs)<br>(2009 AstIRAE) |
|                | 6 Datt Lus + (1876 - 20 perms<br>5/8" Gyp Wallboard + 15/(5/8) = 24 perms                                                                                                                                                                                                                   |                                                                                                                                                                                                                         |
| "IPAD"         | =7 Vapor Resistance = ZRv = Y.49+ VI.0+VI.5+VI.0+V0.73+V28+,                                                                                                                                                                                                                                | 2.0 + 1/20 + 1/24 = 6.70 hr.ft2.in-tg/gr                                                                                                                                                                                |
| A              | -wrīat Vision Glass                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                         |
| (2009 ASHRAE)= | Glassi nu permiratings found=7 assume WVT is negligible (gli<br>> Aluminum mullion (=30mils): 0.05(0.00035)/G0/1000)=0.0006=2.<br>Silicone (jt sealant)(4): 20/1006(2.9)/25=0.23 perms (SP                                                                                                  | ss inslution of the reinf sheets have 0 to minimal perm.<br>use venue resistance of 1/0,0005 1667 w/ one ply<br>FAMVT, Table 1                                                                                          |
|                | =>Vapor Resistance = Ry = V,23 = 4.35 hrift", in Hg/gr (conside                                                                                                                                                                                                                             | ring only the weak point at the silicone jt)                                                                                                                                                                            |
|                | -WVT at Kawneer 1600 Wall System 1-Spandrel Glass                                                                                                                                                                                                                                           |                                                                                                                                                                                                                         |
|                | Spandrel Glazing =7uxe Silicone jt (weak link)=0.23 perms<br>2"air space: 120/2"=60 perms (2009 ASHRAE)<br>2"Thermatiber Sidinglanfaced) = 50 perms (Thermatibe H<br>1"air space: 120 perms (2009 ASHRAE)<br>6" Batt ins: 118/6"=20 perns ("")<br>38 "Gip Wallboard: 15/(5/8)=24 perms ("") | ruduct Data technical sheet)                                                                                                                                                                                            |
|                | =7Vapor Resist. = Ry = 4,23+460+450+4120+420+424=448                                                                                                                                                                                                                                        | hr.ft <sup>2</sup> .in-Hg/gr                                                                                                                                                                                            |
|                | -Small glazing vapor resistances only occur at silicune joints,<br>through the glazing units (permeance was assumed to                                                                                                                                                                      | " resistances are very large elsewhere<br>be negligible through the gluss units),                                                                                                                                       |
|                | - While the resistance is greater at the IMP wall sections, the<br>transfer is much greater as it applies to the entire area<br>silicone sectant represents a weak point in the glazin<br>surface area.                                                                                     | e surface area susceptible to vapor<br>that the IMPs cover, while only the<br>gun ts, covering a very small                                                                                                             |
|                | - The enclosure redesign to all glazing will make the on<br>to water vapor transfer.                                                                                                                                                                                                        | rerall building more resistant                                                                                                                                                                                          |
|                |                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                         |
|                |                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                         |

## Appendix N

Mechanical Equip. Assessment 1/1 Determine facade enclosure portion of overall coolingload - Existing (10) 20-ton Mitsubishi condensing units: Cooling: 240,000 Btu/br 112= 20 tons ×10 units=200 tons capacity Heating: 270,000 Bts/hr Assuming mechanical oversized by 15% => 200 tens/1.15= 174 tons (demand) Conductive Cooling Load i = 7,074 Btu/hr/oF × 50 = 353,700 Btu/hr /12000 = 29,5 tons AMPAD' Solar Load (Vision Glass) q=22,530 st (0.28) (125)=788,550 Bts/hr /12,000=65.7 tons SCL (1997 AstRAE, Table 36) (29.5+65.7)/174 = 0.55 = 755% of total load - Assess impact on mechanical system 70% increase in external/enclosure load = 0.55(70%) = 38.5  $\simeq$  40% increase in total demand Eqiv. system required capacity: 1.4(174 tons) = 244 tons ×1.15 = 280 tons Approx Lost Differential -Assuming a basic mechanical system costs roughly \$3000/ton of cooling, the minimum additional mechanical costs would be about: (280-200)(#3000/ton)= #240,000 (includes installation) % of total construction cost: 240,000/11,000,000 =  $\frac{2\%}{2}$